Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more...The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field,above the surgeon and out of the field of view.This gives the telescope an advantage over an operating microscope.We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens,a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen.This system was used to establish a middle cerebral artery occlusion model in rats.Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×.The screen-imaging telescopic technique was clear,life-like,stereoscopic and matched the actual operation.Screen-imaging guidance led to an accurate,smooth,minimally invasive and comparatively easy surgical procedure.Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%.There was no significant difference in model establishment time,sensorimotor deficit and infarct volume percentage.Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.展开更多
Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluat...Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.展开更多
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
文摘The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field,above the surgeon and out of the field of view.This gives the telescope an advantage over an operating microscope.We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens,a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen.This system was used to establish a middle cerebral artery occlusion model in rats.Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×.The screen-imaging telescopic technique was clear,life-like,stereoscopic and matched the actual operation.Screen-imaging guidance led to an accurate,smooth,minimally invasive and comparatively easy surgical procedure.Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%.There was no significant difference in model establishment time,sensorimotor deficit and infarct volume percentage.Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.
文摘Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.