To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test...To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.展开更多
It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quant...By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .展开更多
提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions...提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.展开更多
基金the National Natural Science Foundation of China (Nos. 50674083 and 51074162) for its financial support
文摘To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
基金This research work is supported by the National Natural Science Foundation of China.
文摘By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .
文摘提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.