The tunneling behavior of the Néel vector out of metastable easy directions or between degenerate easy directions is studied for a small single\|domain antiferromagnetic particle at low temperature. The quantum t...The tunneling behavior of the Néel vector out of metastable easy directions or between degenerate easy directions is studied for a small single\|domain antiferromagnetic particle at low temperature. The quantum tunneling rates for these processes are evaluated for two examples of macroscopic quantum tunneling and one example of macroscopic quantum coherence. The calculations are performed by using the two sublattice model and the instanton method in the spin coherent state path integral. Quantum interference or the spin parity effect is also discussed for each case.展开更多
The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics. During the last decade, the problem of quantum tunneling of magnetization in nanometer-scale magnets has attrac...The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics. During the last decade, the problem of quantum tunneling of magnetization in nanometer-scale magnets has attracted a great deal of theoretical and experimental interest. A review of recent theoretical research of the macroscopic quantum phenomena in nanometer-scale single-domain magnets is presented in this paper. It includes macroscopic quantum tunneling (MQT) and coherence (MQC) in single-domain magnetic particles, the topological phase interference or spin-parity effects, and tunneling of magnetization in an arbitrarily directed magnetic field. The general formulas are shown to evaluate the tunneling rate and the tunneling level splitting for single-domain AFM particles. A nontrivial generalization of Kramers degeneracy for double-well system is provided to coherently spin tunneling for spin systems with m-fold rotational symmetry. The effects induced by the external magnetic field have been studied, where the field is along the easy, medium, hard axis, or arbitrary direction.展开更多
文摘The tunneling behavior of the Néel vector out of metastable easy directions or between degenerate easy directions is studied for a small single\|domain antiferromagnetic particle at low temperature. The quantum tunneling rates for these processes are evaluated for two examples of macroscopic quantum tunneling and one example of macroscopic quantum coherence. The calculations are performed by using the two sublattice model and the instanton method in the spin coherent state path integral. Quantum interference or the spin parity effect is also discussed for each case.
文摘The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics. During the last decade, the problem of quantum tunneling of magnetization in nanometer-scale magnets has attracted a great deal of theoretical and experimental interest. A review of recent theoretical research of the macroscopic quantum phenomena in nanometer-scale single-domain magnets is presented in this paper. It includes macroscopic quantum tunneling (MQT) and coherence (MQC) in single-domain magnetic particles, the topological phase interference or spin-parity effects, and tunneling of magnetization in an arbitrarily directed magnetic field. The general formulas are shown to evaluate the tunneling rate and the tunneling level splitting for single-domain AFM particles. A nontrivial generalization of Kramers degeneracy for double-well system is provided to coherently spin tunneling for spin systems with m-fold rotational symmetry. The effects induced by the external magnetic field have been studied, where the field is along the easy, medium, hard axis, or arbitrary direction.