期刊文献+
共找到383篇文章
< 1 2 20 >
每页显示 20 50 100
Mineral Chemistry,Trace Elements,Isotopic Analysis and Zircon U-Pb Dating in the Hesar Pluton,Northern UDMA,Iran:Implications for Pre-Collisional Magma Mixing
1
作者 Kazem KAZEMI Soroush MODABBERI +3 位作者 Parisa GHARIBNEJAD XIAO Yilin Fatemeh SARJOUGHIAN Ali KANANIAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期657-678,共22页
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th... The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km. 展开更多
关键词 ENCLAVE magma mixing zircon U-Pb dating Urumieh-Dokhtar magmatic arc
下载PDF
Magma Mixing Genesis of the Mafic Enclaves and Related Granitoids in the Kan Granite-Gneiss Complex of Central Côte d’Ivoire: Evidence from Geology, Petrology and Geochemistry
2
作者 Koffi Raoul Teha Koffi Kossonou Jean-Marie Pria +3 位作者 Koffi Joseph Brou Alain Nicaise Kouamelan Marc Ephrem Allialy Souad M’Rabet 《Open Journal of Geology》 CAS 2024年第8期760-786,共27页
The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d... The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust. 展开更多
关键词 magma mixing Mafic Microgranular Enclaves Host Granitoids Kan Granite-Gneiss Complex West Africa
下载PDF
Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt 被引量:5
3
作者 CHEN Guochao PEI Xianzhi +4 位作者 LI Ruibao LI Zuochen LIU Chenjun CHEN Youxin PEI Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期63-,共1页
The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
关键词 area magma mixing and mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt
下载PDF
Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt
4
作者 Tao Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期119-120,共2页
The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary envi... The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing. 展开更多
关键词 area ROCK magma mixing and mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt
下载PDF
Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India-Asia Collision: Zircon SHRIMP U-Pb Dating 被引量:105
5
作者 MOXuanxue DONGGuochen +3 位作者 ZHAOZhidan GUOTieying WANGLiangliang CHENTao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期66-76,共11页
Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampl... Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±l Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone. 展开更多
关键词 SHRIMP isotopic dating GRANITES magma mixing mafic microgranular enclaves Qüxü pluton Gangdisê TIBET
下载PDF
Early Cretaceous Magma Mingling in Xiaocuo,Southeastern China Continental Margin:Implications for Subduction of Paleo-Pacific Plate 被引量:3
6
作者 ZHOU Liyun WANG Yu +1 位作者 HEI Huixin ZHOU Xiaohui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1713-1742,共30页
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses... Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate. 展开更多
关键词 magma mingling mafic and felsic magma zircon U-Pb ages zircon Hf isotopes southeastern China continental margin
下载PDF
Petrogenesis and tectonic implications of Indosinian granitoids from Western Qinling Orogen,China:Products of magma-mixing and fractionation 被引量:6
7
作者 Xiao Xiong Laimin Zhu +5 位作者 Guowei Zhang M.Santosh Hang Jiang Jun Zheng Anlin Guo Lele Ding 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1305-1321,共17页
The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associat... The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associated metallogeny.Here we investigate a group of intrusions termed "Five Golden Flowers" based on petrological,geochemical,zircon U-Pb geochronological and Lu-Hf isotopic studies on the granitoids and their mafic microgranular enclaves(MMEs).Our results show that these intrusions are genetically divided into two types,namely,magma-mixing and highly fractionated.The Jiaochangba,Lujing,Zhongchuan,and Luchuba granitoids are biotite monzogranites(220±0.8 Ma to 217±2.6 Ma) with abundant coeval MMEs(220±.1 Ma to 217±2.7 Ma).The rocks contain moderate to high SiO2,high MgO,Rb,Sr,Ba,and Th contents,but low TiO2,P2 O5,and Sc values,A/CNK of <1.1,and a range of εHf(t) values of-11.7 to +2.23 with corresponding TDM2values of 1967-1228 Ma.The MMEs possess K-feldspar megacrysts,abundant acicular apatites,and show lopsided textures.They have lower SiO2,Al2 O3,and Th contents,but higher MgO,TiO2,and Sc,with εHf(t) values of-18.0 to +3.18 and TDM1 of 849-720 Ma.The data indicate that the MMEs were derived from a magma sourced from the enriched lithospheric mantle.We suggest that these host granitoids were produced by partial melting of latePaleoproterozoic to early-Mesoproterozoic lower crust with the involvement of Neoproterozoic SCLM-derived mafic magmas.The Baijiazhuang pluton is dominantly composed of leucogranite(muscovite granite and twomica monzogranite,216±1.5 Ma) without MMEs.The rocks are peraluminous with high A/CNK(1.06-1.27).Compared with the other four granitoids,the Baijiazhuang leucogranite shows higher SiO2 content,markedly lower concentrations of TiO2,MgO,Al2 O3,CaO,and Fe2 O3T,and lower LREE/HREE and(La/Yb)N values.These leucogranites are also rich in Rb,Th,and U,and display marked depletions in Ba,Sr,Ti,and Eu,indicating that they experienced significant fractionation.Zircon εHf(t) values(-10.2 to-3.27) and TDM2(1868-1424 Ma),as well as the Nb/Ta and K2 O/Na2 O values are similar to the other four granitoids,indicating that they are likely to have been derived from a similar source;with sediments playing only a minor role in the magma generation.The low contents of Yb and Y suggest that their partial melting was controlled by garnets and micrographic texture of K-feldspar reflects high-temperature melting through undercooling.Based on the above features,we infer that the Baijiazhuang leucogranite likely represents the product of high degree fractionation of the I-type biotite monzogranite magma which generated the other four granitoids at relatively high temperatures,within magma chambers at mid-crust depths.We propose that the granitoid suite was formed in the transitional setting from synto post-collision during the collisional orogeny between the SCB and NCB,following break-off of the subducted South China Block lithosphere during 220-216 Ma. 展开更多
关键词 GRANITOIDS Western qinling orogen MMEs magma mixing FRACTIONATION Syn-to post-collisional transition
下载PDF
Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber,Yelagiri Alkaline Complex,South India 被引量:2
8
作者 M.L.Renjith S.N.Charan +2 位作者 D.V.Subbarao E.V.S.S.K.Babu V.B.Rajashekhar 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第6期801-820,共20页
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India... Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O t K2O?5e 10 wt.%, Na2O/K2O ? 0.5e2, TiO2<0.7 wt.%) and metaluminous character. Systematic modal variation of plagioclase (An11e16 Ab82e88), K-feldspar (Or27e95 Ab5e61), diopside (En34e40Fs11e18Wo46e49), biotite, and Ca-amphibole (edenite) build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC). Evidences such as (1) disequilibrium micro-textures in feldspars, (2) microgranular mafic enclaves (MME) and (3) synplutonic dykes signify mixing of shoshonitic mafic magma (MgO ? 4e 5 wt.%, SiO2 ? 54e59 wt.%, K2O/Na2O ? 0.4e0.9) with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injec-tion. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes) share similar shoshonitic and met-aluminous character;mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumu-lation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved through multiple physical processes like convection, shear flow, crystal accumulation and magma mixing. 展开更多
关键词 magma mixing Disequilibrium textures PETROLOGY Synplutonic dykes GEODYNAMICS
下载PDF
Petrology,geochemistry,and crystal size distribution of the basaltic andesite-dacite association at Mt.Sumbing,Central Java,Indonesia:Insights to magma reservoir dynamics and petrogenesis
9
作者 Indranova Suhendro Endra Yuliawan +6 位作者 Revina Fitri Zen Zulfa Yogi Rahmawati Pandu Eka Priyana Sonna Diwijaya Muhammad Alsamtu Tita Sabila Pratama Suhartono Andre Jonathan Gammanda Adhny El Zamzamy Latief 《Acta Geochimica》 EI CAS CSCD 2024年第5期838-855,共18页
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str... Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2). 展开更多
关键词 Sumbing Whole-rock geochemistry PETROGENESIS FRACTIONATION magma mixing Crystal size distribution
下载PDF
Magma Mixing as a Trigger of Unzen's Volcano Eruptions
10
作者 Ilya S.Fomin Pavel Plechov 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期75-75,共1页
Recent eruption in 1991-1995 years of Unzen Volcano(Kyushu Island,Japan)has caught attention of many volcanologists because of dramatical consequences of the previos eruption in 1792,when more than 15000 people were p... Recent eruption in 1991-1995 years of Unzen Volcano(Kyushu Island,Japan)has caught attention of many volcanologists because of dramatical consequences of the previos eruption in 1792,when more than 15000 people were perished.So it is important to study this volcano and try to predict future eruptions and their possible damage.It is proved now,that magma hybridization processes 展开更多
关键词 Unzen magma mixing MINERAL THERMOBAROMETRY
下载PDF
Detecting Magma Mixing Processes Using Scanning Electron Microscopy Method
11
作者 Nicola Mari 《Journal of Earth Science and Engineering》 2016年第2期90-97,共8页
This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful me... This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems. 展开更多
关键词 Scanning electron microscopy VOLCANOLOGY magma mixing GEOCHEMISTRY MINERALOGY disequilibrium textures.
下载PDF
Decoding the nature of interaction between felsic clasts and mafic magma in a subvolcanic magma chamber from amphibole–titanite transformation and chemistry
12
作者 Bibhuti Gogoi Deepshikha Borah 《Acta Geochimica》 EI CAS CSCD 2023年第5期845-858,共14页
The Ghansura Rhyolite Dome of Bathani vol-cano-sedimentary sequence,eastern India,represents a subvolcanic felsic magma chamber that was invaded by crystal-rich mafic magma during its cooling phase to form an assortme... The Ghansura Rhyolite Dome of Bathani vol-cano-sedimentary sequence,eastern India,represents a subvolcanic felsic magma chamber that was invaded by crystal-rich mafic magma during its cooling phase to form an assortment of hybrid rocks.A prominent solidified portion of the magma reservoir was embedded in the intruding mafic magma as fragments or clasts that pro-duced mafic rocks with felsic clasts.Two distinct compo-sitional zones could be identified in the mafic rocks containing felsic clasts-(a)medium-grained mafic zones that are dominated by amphiboles,and(b)fine-grained felsic zones consisting primarily of quartz and feldspar.Amphiboles occur in most of the felsic clasts suggesting the mechanical transfer of crystals from the mafic to the felsic zones.Compositions of amphiboles were determined from both the mafic and felsic zones that show linear compositional variation from actinolite to ferro-hornblende through magnesio-hornblende,suggesting the interplay of complex substitutions in individual amphibole sites.Cationic schemes have confirmed the role of pargasite(Pg)-type substitution,which is a combination of edenite(Ed)-and tschermakite(Ts)-type substitutions.Moreover,amphibole has been extensively replaced by titanite in the studied rock.Titanite produced in the mafic zones due to the destabilization of amphiboles was observed migrating from the mafic to the felsic zones through mineral-trans-porting veins.Compositions of titanite were determined from grains that occur in association with amphiboles and those which are present as individual entities in the felsic zones.Similar to amphiboles,titanite also displays cationic substitutions in the studied rock.From the results presented in this work,we infer that extensive replacement of amphibole by titanite and cationic substitutions in amphi-boles,and also titanite,may be considered important pet-rogenetic indicators to decipher magma mixing events. 展开更多
关键词 magma mixing Mineral-transporting veins Crystal transfer mechanism Cationic substitutions Amphibole–titanite replacement
下载PDF
尾巨桉萌芽林与混交改造林径流水质变化特征 被引量:2
13
作者 伍琪 任世奇 +3 位作者 韦振道 韦俏娜 杨中宁 刘媛 《中南林业科技大学学报》 CAS CSCD 北大核心 2024年第3期100-107,共8页
【目的】探讨桉树纯林及桉树混交林坡面径流水质变化特征,揭示水质变化的客观规律,为正确回答和解决桉树人工林水质问题,实现桉树人工林可持续发展提供重要科学依据。【方法】以桉树纯林、桉树×灰木莲混交林(带状混交、行间混交、... 【目的】探讨桉树纯林及桉树混交林坡面径流水质变化特征,揭示水质变化的客观规律,为正确回答和解决桉树人工林水质问题,实现桉树人工林可持续发展提供重要科学依据。【方法】以桉树纯林、桉树×灰木莲混交林(带状混交、行间混交、株间混交)、灰木莲纯林为研究对象,选取对森林水质有关键影响作用的因子,采用连续监测与实验室分析相结合的方法,对比不同栽培模式条件下径流水质变化差异。【结果】1)试验样地坡面径流水pH值、COD、BOD5均达到我国农田灌溉水质标准(GB 5084—2021)对pH值(5.5~8.5)、COD(<150.00 mg·L^(-1))、BOD5(<60.00 mg·L^(-1))浓度的要求;2)桉树纯林坡面径流水中单宁含量(7.77 mg·L^(-1))显著高于其他样地,达到空白对照样地(1.22 mg·L^(-1))的6.4倍,桉树×灰木莲混交后可以有效降低坡面径流水中单宁含量,其中桉树×灰木莲行间混交模式效果最明显;3)桉树和灰木莲纯林坡面径流水中腐殖酸含量均高于混交林,其中桉树×灰木莲带状混交模式更有利于其坡面径流水中腐殖酸含量的降低。【结论】桉树混交模式的营建在保证坡面径流水质主要指标达标的同时能有效降低坡面径流水中单宁及腐殖酸含量,桉树混交栽培模式进一步缓解了桉树纯林对土壤酸碱性及微生物的影响。 展开更多
关键词 桉树 水质 混交林 坡面径流 混交模式
下载PDF
镁铁质岩浆周期性补给对云南普朗斑岩Cu-Au矿床的制约:能量约束下热力学模拟
14
作者 张少颖 和文言 肖仪武 《现代地质》 CAS CSCD 北大核心 2024年第4期922-933,共12页
镁铁质岩浆周期性补给于硅酸质岩浆房是形成大型斑岩矿床的关键因素。本文以普朗超大型斑岩Cu-Au矿床为例,通过能量约束体系下的热力学方法模拟浅部硅酸质岩浆房中镁铁质岩浆周期性补给过程,定量评估该过程对形成大型斑岩矿床的控制作... 镁铁质岩浆周期性补给于硅酸质岩浆房是形成大型斑岩矿床的关键因素。本文以普朗超大型斑岩Cu-Au矿床为例,通过能量约束体系下的热力学方法模拟浅部硅酸质岩浆房中镁铁质岩浆周期性补给过程,定量评估该过程对形成大型斑岩矿床的控制作用。普朗矿床成矿前粗粒石英闪长玢岩(CQD)和成矿期石英二长斑岩(QMP)复式岩体中均普遍发育镁铁质暗色微粒包体(MMEs),岩相学特征显示斑岩体中角闪石和黑云母发育韵律环带结构或港湾状溶蚀结构以及针柱状磷灰石的存在均指示发生了镁铁质岩浆混合作用。与单一的分离结晶模型(FC)相比,多阶段岩浆补给-分离结晶模型(R3FC)显示,镁铁质岩浆的补给一方面会抑制长石的结晶,另一方面会促进钙铁镁和铁镁等多类型角闪石的形成,并大幅提前黑云母的结晶次序。以硅酸质岩浆物质摩尔分数变化与挥发分之间相关性为参照,获得的熔体H_(2) O、SCSS(硫化物饱和时硅酸盐熔体中的S含量)和Cl溶解度显示,镁铁质岩浆补给将在岩浆演化早期提高而在晚期降低残余熔体H_(2)O含量(0.16%、0.04%、-0.30%),持续提高熔体SCSS(78.74×10^(-6)、94.44×10^(-6)和137.88×10^(-6))和Cl溶解度(0.04%、0.10%和0.20%),但对Cu含量影响有限。结果表明,能量约束体系下的R3FC和FC热力学模型不仅能够合理解释普朗复式斑岩体矿物结构特征,也定量验证了镁铁质岩浆的补给对成矿岩体异常高H_(2) O、S和Cl含量的贡献。 展开更多
关键词 岩浆混合 热力学模拟 挥发分 普朗斑岩Cu-Au矿床
下载PDF
宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构:岩浆混合触发火山喷发的矿物学证据
15
作者 霍海东 杨祝良 洪文涛 《华东地质》 CAS 2024年第1期115-133,共19页
矿物的不平衡结构是岩浆混合、不平衡结晶以及岩浆-流体交代等过程的重要指标。在长江中下游宁芜盆地娘娘山破火山口的早白垩世娘娘山组黝方石响岩中,黑云母斑晶发育了罕见的逆反应边结构,即在黑云母边部出现由角闪石及辉石等镁铁质矿... 矿物的不平衡结构是岩浆混合、不平衡结晶以及岩浆-流体交代等过程的重要指标。在长江中下游宁芜盆地娘娘山破火山口的早白垩世娘娘山组黝方石响岩中,黑云母斑晶发育了罕见的逆反应边结构,即在黑云母边部出现由角闪石及辉石等镁铁质矿物组成的反应边,但对其成因长期以来缺少深入研究。文章通过详细的岩相学研究和电子探针分析等手段,查明宁芜盆地娘娘山组黝方石响岩中具逆反应边结构的黑云母具有核-幔-边结构,其核部为原生黑云母,靠近逆反应边的幔部为高温熔蚀再平衡结晶成因的黑云母,边部为角闪石。黑云母及角闪石的温压计算及其地球化学特征表明,黑云母结晶温度为807~862℃,压力为231~369 MPa;相比之下,“逆反应边”中的角闪石结晶温度为920~949℃,压力为271~309 MPa,其寄主岩浆化学组成类似于亚碱性系列的基性岩浆,较黑云母寄主岩浆更偏基性。黑云母与“逆反应边”中角闪石结晶的物理化学条件差异表明,这种特殊的“逆反应边”结构是早期碱性岩浆与晚期基性亚碱性岩浆混合的结果。矿物CSD计算表明,反应边的形成可能仅先于火山喷发一个月左右,暗示岩浆混合可能是导致火山喷发的重要诱因。 展开更多
关键词 火山喷发机制 岩浆混合 黑云母逆反应边 角闪石 黝方石响岩 宁芜盆地娘娘山
下载PDF
华北克拉通南缘角子山花岗岩的锆石U-Pb定年、岩石地球化学特征及构造背景
16
作者 马玉见 刘亚剑 +3 位作者 梁涛 卢仁 包刚 雷万杉 《西北地质》 CSCD 北大核心 2024年第1期95-109,共15页
角子山岩基是秦岭造山带东端伏牛山余脉规模居第二位的燕山期侵入岩,其岩石成因模型有助于深入认识华北克拉通南缘伏牛山余脉早白垩世酸性岩浆的形成规律和深部构造演化。角子山花岗岩体LA-ICP-MS锆石U-Pb定年样品的30个测点中,18个有... 角子山岩基是秦岭造山带东端伏牛山余脉规模居第二位的燕山期侵入岩,其岩石成因模型有助于深入认识华北克拉通南缘伏牛山余脉早白垩世酸性岩浆的形成规律和深部构造演化。角子山花岗岩体LA-ICP-MS锆石U-Pb定年样品的30个测点中,18个有效锆石测点的U-Pb年龄集中于(129.5±1.4)Ma(1个)和(116.1±1.4)~(122.2±1.3)Ma(17个)两组,形成了锆石年龄谱,后者的加权平均年龄为(119.3±0.9)Ma。结合前人10个有效锆石测点的U-Pb年龄数据,27颗锆石的加权平均年龄为(118.2±1.2)Ma,代表了角子山花岗岩的形成时代。角子山花岗岩样品具有富Si和碱、贫Ca和Mg的特征,为高钾钙碱性系列岩石,属于准铝质-弱过铝质花岗岩。在微量元素蛛网图中,角子山花岗岩样品显示了Rb、Th及Zr、Hf的正异常和Sr、P、Ti的负异常。角子山花岗岩稀土总量为20.9×10^(-6)~204×10^(-6),(La/Yb)N值为4.24~21.0,δEu值为0.53~0.78,稀土配分模式呈轻稀土富集(右倾平滑)和中、重稀土亏损(近水平)的特征。角子山花岗岩样品的LaN-(La/Yb)N投点显示了正相关关系,表明其成分变异受控于部分熔融作用。角子山花岗岩的部分熔融源残余相包括角闪石、斜长石和金红石,无石榴子石残余,表明它形成于正常厚度地壳,存在深度大致为40~50 km和小于30 km的两个部分熔融岩石源区。角子山花岗岩形成于秦岭早白垩世陆(板)内造山阶段,经历了岩浆/流体混合再活化作用,是~120 Ma区域岩石圈拆沉作用的产物。 展开更多
关键词 角子山 正长花岗岩 岩浆/流体混合再活化 岩石圈拆沉 伏牛山余脉 华北克拉通南缘
下载PDF
Petro Gram: An excel-based petrology program for modeling of magmatic processes 被引量:1
17
作者 Mesut Gündüz Kürsad Asan 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期81-92,共12页
Petro Gram is an Excel?based magmatic petrology program that generates numerical and graphical models.Petro Gram can model the magmatic processes such as melting,crystallization,assimilation and magma mixing based on ... Petro Gram is an Excel?based magmatic petrology program that generates numerical and graphical models.Petro Gram can model the magmatic processes such as melting,crystallization,assimilation and magma mixing based on the trace element and isotopic data.The program can produce both inverse and forward geochemical models for melting processes(e.g.forward model for batch,fractional and dynamic melting,and inverse model for batch and dynamic melting).However,the program uses a forward modeling approach for magma differentiation processes such as crystallization(EC:Equilibruim Crystallization,FC:Fractional Crystallization,IFC:Imperfect Fractional Crystallization and In-situ Crystallization),assimilation(AFC:Assimilation Fractional Crystallization,Decoupled FC-A:Decoupled Fractional Crystallization and Assimillation,A-IFC:Assimilation and Imperfect Fractional Crystallization)and magma mixing.One of the most important advantages of the program is that the melt composition obtained from any partial melting model can be used as a starting composition of the crystallization,assimilation and magma mixing.In addition,Petro Gram is able to carry out the classification,tectonic setting,multi-element(spider)and isotope correlation diagrams,and basic calculations including Mg^#,Eu/Eu^*,εSrandεNdwidely used in magmatic petrology. 展开更多
关键词 PetroGram magmatic petrology Geochemical modeling Partial melting CRYSTALLIZATION ASSIMILATION magma mixing
下载PDF
Petrogenesis of the microcrystalline-dioritic enclaves from Jiuling granitoids in the eastern segment of Jiangnan Orogen and constraints on magma source materials 被引量:1
18
作者 Zheng Duan Guang-fu Xing +5 位作者 Sheng-bing Liao Ping-li Chu Wen-cheng Huang Yan-hui Zhu Xu-jie Shu Chang-bo Li 《China Geology》 2018年第3期374-391,共18页
Numerous dark enclaves with different shapes are found in Jiuling Neoproterozoic granitoids.Precise LAICP-MS U-Pb dating was conducted on zircons extracted from two microcrystalline enclave samples,yielding crystalliz... Numerous dark enclaves with different shapes are found in Jiuling Neoproterozoic granitoids.Precise LAICP-MS U-Pb dating was conducted on zircons extracted from two microcrystalline enclave samples,yielding crystallization ages of 822.6±5.8 Ma and 822.2±6.2 Ma,respectively.The consistent ages within analytical errors with the host granitoids suggested that they were the products of the same magmatism.The microcrystalline-dioritic enclaves commonly show plastic forms and contain similar plagioclase megacrysts to the host rocks,and both of the enclaves and host granitoids showed a complex composition and structural imbalance in plagioclases.Furthermore,the apatites with a euhedral acicular shape occurred widely in the microcrystalline-dioritic enclaves.All of these petrographic features above imply magma mixing is involved in their diagenesis.The enclaves and host granitoids show a marked zircon trace element difference and Hf isotopic signatures without correlation in zircon trace element pairs but form their own system between enclaves and host granitoids.Additionally,most of the zircons show extremely high εHf (t) with εHf (t) =3.54?11.94 from the southern samples,and εHf (t) =1.0?9.09 from the central region.Some zircons with the higher εHf (t) are similar to the zircons from the juvenile island arc in the eastern segment of Jiangnan Orogen.Integrated geological and Hf isotopic characteristics suggest microcrystalline-dioritic enclaves were derived from the partial melting process of the Mesoproterozoic crust which enriched juvenile island arc materials and mixed with the granitic magma that remelted from the Mesoproterozoic continental crust which relatively enriched ancient sediments and mixed with the host granitoid in diagenesis. 展开更多
关键词 ZIRCON U-Pb age ZIRCON trace element COMPOSITIONS Hf isotopic COMPOSITIONS magma mixing Jiuling PLUTON
下载PDF
Crystallization Conditions and Mineral Chemistry in the East of Tafresh, Central Iran, with Insights into Magmatic Processes
19
作者 Davood RAEISI Hassan MRNEJAD 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1755-1772,共18页
The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA)in Iran.These rocks,mainly consisting of diorite and granodiorite,were emplaced during the Early Miocene.They are compose... The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA)in Iran.These rocks,mainly consisting of diorite and granodiorite,were emplaced during the Early Miocene.They are composed of varying proportions of plagioclase+K-feldspar+hornblende±quartz±biotite.Discrimination diagrams and chemical indices of amphibole phases reveal a calc-alkaline affinity and fall clearly in the crust-mantle mixed source field.The estimated pressure,derived from Al in amphibole barometry,is approximately 3 Kb.The granitoids are I-type,metaluminous and belong to the calc-alkaline series.They are all enriched in light rare earth elements and large ion lithophile elements,depleted in high field strength elements and display geochemical features typical of subduction-related calc-alkaline arc magmas.Most crystal size distribution(CSD)line patterns from the granitoids show a non-straight trend which points to the effect of physical processes during petrogenesis.The presence of numerous mafic enclaves,sieve texture and oscillatory zoning along with the CSD results show that magma mixing in the magma chamber had an important role in the petrogenesis of Tafresh granitoids.Moreover,the CSD analysis suggests that the plagioclase crystals were crystallized in a time span of less than 1000 years,which is indicative of shallow depth magma crystallization. 展开更多
关键词 crust-mantle mixed source I-TYPE SUBDUCTION crystal size distribution magma mixing Urumieh-Dokhtar magmatic Arc
下载PDF
Exchange between Mafic Enclaves and Host Magma: Case of 1991-1995 Mount Unzen Eruption
20
作者 Ilya S. Fomin Pavel Yu. Plechov 《Journal of Earth Science and Engineering》 2012年第11期631-635,共5页
Recent eruption of Unzen Volcano in 1991-1995 caught attention of scientists all over the world because of disastrous character of previous one in 1792. Intrusion of andesitic magma to the chamber with rhyolitic magma... Recent eruption of Unzen Volcano in 1991-1995 caught attention of scientists all over the world because of disastrous character of previous one in 1792. Intrusion of andesitic magma to the chamber with rhyolitic magma is proposed to be a trigger for these eruptions. T-P-X parameters of two end-member magmas have been estimated several times, but usually estimations are based on phenocrysts assemblages. New results of this research are based on mafic enclaves and groundmass. These results are significant for magma mixing and mingling theory. 展开更多
关键词 Unzen Volcano magma mixing magma mingling mafic enclaves X-Ray tomography.
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部