In this paper, the diffusion behavior between MgO and Fe2O3(the main iron oxide in pellets) is investigated using a diffusion couple method. In addition, the distribution regulation of MgO in MgO-bearing pellets is ...In this paper, the diffusion behavior between MgO and Fe2O3(the main iron oxide in pellets) is investigated using a diffusion couple method. In addition, the distribution regulation of MgO in MgO-bearing pellets is analyzed via pelletizing experiments. The results illustrate that MgO is prone to diffuse into Fe2O3 in the form of solid solution; the diffusion rate considered here is 13.64 μm·min^(-1). Most MgO content distributes in the iron phase instead of the slag phase. The MF phase {(Mg(1-x)Fex)O·Fe2O3, x ≤ 1} is generated in the MgO-bearing pellets. However, the distribution of MgO in the radial direction of the pellets is inconsistent. The solid solution portion of MgO in the MF phase is larger in the outer layer of the pellets than in the inner layer. In this work, the approximate chemical composition of the MF phase in the outer layer of the pellets is {(Mg(0.35-0.77)·Fe(0.65-0.23)) O·Fe2O3} and in the inner layer is {(Mg(0.13-0.45)·Fe(0.87-0.55))O·Fe2O3}.展开更多
Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica...Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.展开更多
Based on conduction,convection and radiation heat transfer among the flue gas,kiln wall,and the pellet bed material,and on the basis of the coal combustion and analysis of reaction heat of pellet induration in the rot...Based on conduction,convection and radiation heat transfer among the flue gas,kiln wall,and the pellet bed material,and on the basis of the coal combustion and analysis of reaction heat of pellet induration in the rotary kiln,the temperature field model of rotary kiln was established.Using visual studio net,matlab and open source computer vision library as development tools,combining with the ActiveX data objects database technology,the temperature field simulation system for rotary kiln of iron ore oxidized pellet production was developed.Temperature distribution of pellet and flue gas in rotary kiln was dynamically displayed.展开更多
基金the financial support of China Postdoctoral Science Foundation (No.2016M591445)Postdoctoral Science Foundation of NEU China (No.20160302)National Natural Science Foundation of China (No.51604069)
文摘In this paper, the diffusion behavior between MgO and Fe2O3(the main iron oxide in pellets) is investigated using a diffusion couple method. In addition, the distribution regulation of MgO in MgO-bearing pellets is analyzed via pelletizing experiments. The results illustrate that MgO is prone to diffuse into Fe2O3 in the form of solid solution; the diffusion rate considered here is 13.64 μm·min^(-1). Most MgO content distributes in the iron phase instead of the slag phase. The MF phase {(Mg(1-x)Fex)O·Fe2O3, x ≤ 1} is generated in the MgO-bearing pellets. However, the distribution of MgO in the radial direction of the pellets is inconsistent. The solid solution portion of MgO in the MF phase is larger in the outer layer of the pellets than in the inner layer. In this work, the approximate chemical composition of the MF phase in the outer layer of the pellets is {(Mg(0.35-0.77)·Fe(0.65-0.23)) O·Fe2O3} and in the inner layer is {(Mg(0.13-0.45)·Fe(0.87-0.55))O·Fe2O3}.
基金Project(NCET050630) supported by Program for New Century Excellent Talents in University,China
文摘Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.
基金Sponsored by Program for New Century Excellent Talents in University of China(NCET-05-0630)
文摘Based on conduction,convection and radiation heat transfer among the flue gas,kiln wall,and the pellet bed material,and on the basis of the coal combustion and analysis of reaction heat of pellet induration in the rotary kiln,the temperature field model of rotary kiln was established.Using visual studio net,matlab and open source computer vision library as development tools,combining with the ActiveX data objects database technology,the temperature field simulation system for rotary kiln of iron ore oxidized pellet production was developed.Temperature distribution of pellet and flue gas in rotary kiln was dynamically displayed.