The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and...A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.展开更多
A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a m...A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.展开更多
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend...Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.展开更多
A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the mic...A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the microstructure of the cathodic phosphate coating was investigated.The results show that the crystals of the coating are finer and the microstructures of the outer surface of the coatings are zigzag at the cathodic density of 0.2-0.5 A/dm^2.The content of nano metallic zinc particles in the coating decreases with the increase of the thickness of the coatings and tends to be zero when the coating thickness is 4.14μm.The cathodic phosphate coating was applied to be a transition coating for improving the adhesion between the paints and the magnesium alloys. The formation mechanism of the cathodic phosphate coating was investigated as well.展开更多
Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼1...Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials.展开更多
A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in p...A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.展开更多
通过静态浸泡腐蚀实验,采用扫描电子显微镜、X射线能谱仪、电化学实验等研究镁合金铈转化膜在0.05mol/L Na Cl溶液中的腐蚀行为,探讨膜层腐蚀机理。结果表明:随着浸泡时间的延长,膜层发生腐蚀和遭到破坏的程度也随之增强,浸泡初级腐蚀...通过静态浸泡腐蚀实验,采用扫描电子显微镜、X射线能谱仪、电化学实验等研究镁合金铈转化膜在0.05mol/L Na Cl溶液中的腐蚀行为,探讨膜层腐蚀机理。结果表明:随着浸泡时间的延长,膜层发生腐蚀和遭到破坏的程度也随之增强,浸泡初级腐蚀产物组织疏松,腐蚀后期腐蚀产物的致密性和紧实度增加;腐蚀产物主要由镁、氧等元素组成。随浸泡时间的延长,膜层电阻和腐蚀电位先增大后减小,腐蚀电流密度呈现先减小后增大的趋势。展开更多
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金Projects(50674038, 50974048) supported by the National Natural Science Foundation of ChinaProject(200802140004) supported by Doctoral Fund of Ministry of Education of China
文摘A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50974048)the Doctoral Fund of Ministry of Education of China(Grant No.200802140004)+1 种基金the Foundation of Heilongjiang Educational Committee(Grant No.12531116)the Harbin Special Funds for Creative Talents in Science and Technology(Grant No.2013RFQXJ102)
文摘A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.
基金supported by the National Natural Science Foundation of China(51971040,52171101)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0613)+1 种基金the National Natural Science Foundation of China(52001036,51971044)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022M12).
文摘Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.
文摘A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the microstructure of the cathodic phosphate coating was investigated.The results show that the crystals of the coating are finer and the microstructures of the outer surface of the coatings are zigzag at the cathodic density of 0.2-0.5 A/dm^2.The content of nano metallic zinc particles in the coating decreases with the increase of the thickness of the coatings and tends to be zero when the coating thickness is 4.14μm.The cathodic phosphate coating was applied to be a transition coating for improving the adhesion between the paints and the magnesium alloys. The formation mechanism of the cathodic phosphate coating was investigated as well.
基金This work was financially supported by the Jiangsu Distinguished Professor Project,the Innovate UK(Project reference:10004694)the National Key R&D Program of China 2021YFB3401200.The Experimental Techniques Centre at Brunel University London and Nanjing University of Aeronautics and Astronautics are acknowledged.The authors also acknowledge the characterization facility at Shanghai Jiao Tong University,Central South University,University of Birmingham and University of Lille.
文摘Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials.
基金CSIR-IMTECH laboratory for providing the technical support in biocompatibility testing。
文摘A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.
文摘通过静态浸泡腐蚀实验,采用扫描电子显微镜、X射线能谱仪、电化学实验等研究镁合金铈转化膜在0.05mol/L Na Cl溶液中的腐蚀行为,探讨膜层腐蚀机理。结果表明:随着浸泡时间的延长,膜层发生腐蚀和遭到破坏的程度也随之增强,浸泡初级腐蚀产物组织疏松,腐蚀后期腐蚀产物的致密性和紧实度增加;腐蚀产物主要由镁、氧等元素组成。随浸泡时间的延长,膜层电阻和腐蚀电位先增大后减小,腐蚀电流密度呈现先减小后增大的趋势。