Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys...Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.展开更多
Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is ...Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is important, such as in the aerospace and automotive industries.However, their practical applications are still limited because of their poor corrosion resistance, low high temperature strength and ambient formability. Based on such their property shortcomings, recently degradable magnesium alloys were developed for broadening their potential applications. Considering the degradable Mg alloys for medical applications were well reviewed, the present review put an emphasis on such degradable magnesium alloys for structural and functional applications, especially the applications in the environmental and energy fields. Their applications as fracture ball in fossil energy, sacrificial anode, washing ball, and as battery anodes, transient electronics, were summarized. The roles of alloying elements in magnesium and the design concept of such degradable magnesium alloys were discussed. The existing challenges for extending their future applications are explored.展开更多
A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in p...A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.展开更多
Mg-Li based alloys hold much attention as potential biomedical materials due to their excellent ductility. A reduced mechanical strength and concern for biocompatibility are exhibited for Mg-Li binary alloys due to th...Mg-Li based alloys hold much attention as potential biomedical materials due to their excellent ductility. A reduced mechanical strength and concern for biocompatibility are exhibited for Mg-Li binary alloys due to the presence of Li element. Addition of the Ca element into Mg-Li alloys leads to an improvement in mechanical strength and biocompatibility.In the present work, the microstructure, mechanical property and corrosion behaviors of three kinds(α, α+β, β) of as-extruded Mg-Li(1, 9 and 15 wt.%)-1 Ca alloys were investigated using optical microscope, X-ray diffraction(XRD), tensile,immersion and electrochemical polarization measurements.In vitro biocompatibility was evaluated by cytotoxicity assays,hemolysis and four coagluation tests. The results indicated that the Mg-1 Li-1 Ca and Mg-15 Li-1 Ca alloys were characterized by α-Mg and β-Li phases besides Mg2 Ca particles, respectively; while the Mg-9 Li-1 Ca by dual(α-Mg+β-Li) phase together with Mg2 Ca phase. The Mg-1 Li-1 Ca alloy had the highest ultimate tensile strength(UTS) and yield strength(YS)and the lowest elongation(EL) to failure(10.1±1.24%) as well.The EL for the Mg-9 Li-1 Ca alloy was the highest(52.2±0.01%).The long-term immersion tests revealed a decrease in corrosion resistance with increasing Li content. The results of cytotoxicity assays clearly showed that the Mg-Li-Ca alloys demonstrated no toxicity to L-929 cells in 10% concentration of extracts. The Mg-1 Li-1 Ca alloy also exhibited an acceptable hemolysis ratio. The results of four coagulation tests designated no sign of thrombogenicity for the Mg-Li-Ca alloys except for the Mg-15 Li-1 Ca alloy.展开更多
Surgical failures,caused by postoperative infections of bone implants,are commonly met,which cannot be treated precisely with intravenous antibiotics.Photothermal therapy(PTT)and photodynamic therapy(PDT)have attracte...Surgical failures,caused by postoperative infections of bone implants,are commonly met,which cannot be treated precisely with intravenous antibiotics.Photothermal therapy(PTT)and photodynamic therapy(PDT)have attracted widespread attention due to their non-invasive antibacterial effects on tissues and no bacterial resistance,which may be an excellent approach to solve infections related to bone implants for biodegradable magnesium alloys.Herein,a sodium copper chlorophyllin(SCC)with a porphyrin ring induced Ca-P coating was prepared on AZ31 magnesium alloy via layer-by-layer(LbL)assembly.The morphology and composition of the samples were characterized through field emission scanning electron microscope(FE-SEM)with affiliated energy dispersive spectrometer(EDS),X-ray diffractometer(XRD),and Fourier infrared spectrometer(FTIR)and X-ray photoelectron spectrometer(XPS)as well.Potentiodynamic polarization,electrochemical impedance spectroscopy(EIS)and hydrogen evolution experiments were employed to evaluate the corrosion behavior of the samples.Atomic absorption spectrophotometer was used to measure Cu elemental content of different immersion periods.Cytocompatibility and antibacterial performance of the coatings were probed using in vitro cytotoxicity tests(MTT assay),live/dead cell staining and plate counting method.The results showed that the obtained(Ca-P/SCC)10 coating exhibited good corrosion resistance,antimicrobial activity(especially under 808 nm irradiation)and biocompatibility.The antibacterial rates for E.coli and S.aureus were 99.9%and 99.8%,respectively;and the photothermal conversion efficiency was as high as 42.1%.Triple antibacterial mechanisms including photodynamic,photothermal reactions and copper-ions release were proposed.This coating exhibited a promising application for biodegradable magnesium alloys.展开更多
In order to evaluate the effect of blood glucose concentration on the reliability of AZ31 magnesium alloy medical implant,the corrosion of AZ31 alloy was studied in a simulated physiological saline solution.It is foun...In order to evaluate the effect of blood glucose concentration on the reliability of AZ31 magnesium alloy medical implant,the corrosion of AZ31 alloy was studied in a simulated physiological saline solution.It is found that when the glucose concentration is in the normal range of ca.1g/L,the corrosion of AZ31 alloy can be inhibited However,when the glucose concentration becomes higher like that of diabetic patients,the degradation of AZ31 alloy is significantly accelerated.Therefore,for diabetic patients,the change in glucose concentration must be taken into consideration in order to ensure the reliability ofAZ31 medical implants.展开更多
In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static im...In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static immersion test,electrochemical corrosion test,scanning electron microscopy(SEM),and energy dispersive spectroscopic(EDS) analysis,and in vitro biocompatibilities were assessed by hemolysis and cytotoxicity tests.Pure magnesium was used as control.The results of static immersion test and electrochemical corrosion test in simulated body fluid(SBF) demonstrated that the addition of alloying elements could improve the corrosion resistance.The hemolysis test found that the hemolysis rate of calcium phosphate coated NZK alloy was 4.8%,which was lower than the safe value of 5%.The cytotoxicity test indicated that NZK alloy extracts did not significantly reduce MC3T3-E1 cell viability.Hemolysis test and cytotoxicity test display excellent hemocompatibility and cytocompatibility of NZK alloy in vitro.Our data indicate that NZK alloy has excellent biocompatibility and thus can be considered as a potential degradable medical biomaterial for orthopedic applications.展开更多
Magnesium alloys have shown great potential for their use in the medical device field, due to the promising biodegradability. However, it remains a challenge to characterize the degradation behavior of the Mg alloys i...Magnesium alloys have shown great potential for their use in the medical device field, due to the promising biodegradability. However, it remains a challenge to characterize the degradation behavior of the Mg alloys in a quantitative manner. As such, controlling the degradation rate of the Mg alloys as per our needs is still hard, which greatly limits the practical application of the Mg alloys as a degradable biomaterial.This paper discussed a numerical model developed based on the diffusion theory, which can capture the experimental degradation behavior of the Mg alloys precisely. The numerical model is then implemented into a finite element scheme, where the model is calibrated with the data from our previous studies on the corrosion of the as-cast Mg-1 Ca and the as-rolled Mg-3 Ge binary alloys. The degradation behavior of a pin implant is predicted using the calibrated model to demonstrate the model’s capability. A standard flow is provided in a practical framework for obtaining the degradation behavior of any biomedical Mg alloys. This methodology was further verified via the comparison with enormous available experimental results. Lastly, the material parameters defined in this model were provided as a new kind of material property.展开更多
Protein exerts a critical influence on the degradation behavior of absorbable magnesium(Mg)-based implants.However,the interaction mechanism between protein and a micro-arc oxidation(MAO)coating on Mg alloys remains u...Protein exerts a critical influence on the degradation behavior of absorbable magnesium(Mg)-based implants.However,the interaction mechanism between protein and a micro-arc oxidation(MAO)coating on Mg alloys remains unclear.Hereby,a MAO coating was fabricated on AZ31 Mg alloy.And its degradation behavior in phosphate buffer saline(PBS)containing bovine serum albumin(BSA)was investigated and compared with that of the uncoated alloy.Surface morphologies and chemical compositions were studied using Field-emission scanning electron microscope(FE-SEM),Fourier transform infrared spectrophotometer(FT-IR)and X-ray diffraction(XRD).The degradation behavior of the bare Mg alloy and its MAO coating was studied through electrochemical and hydrogen evolution tests.Cytotoxicity assay was applied to evaluate the biocompatibility of Mg alloy substrate and MAO coating.Results indicated that the presence of BSA decreased the degradation rate of Mg alloy substrate because BSA(RCH(NH2)COO‾)molecules combined with Mg2+ions to form(RCH(NH2)COO)2Mg and thus inhibited the dissolution of Mg(OH)2 by impeding the attack of Cl‾ions.In the case of MAO coated Mg alloy,the adsorption of BSA on MAO coating and the formation of(RCH(NH2)COO)2Mg exhibited a synergistic effect and enhanced the corrosion resistance of the coated alloy significantly.Furthermore,cell bioactive assay suggested that the MAO coating had good viability for MG63 cells due to its high surface area.展开更多
Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone...Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone response were investigated.Compared with the binary Mg-2Sr alloys,the addition of Ca and Zn improved the in vitro and in vivo corrosion resistance.Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited more uniform corrosion and maintained the configuration of the implants 4 weeks post-implantation.The in vivo corrosion rates were 0.85 mm/yr for Mg-2Sr-Zn and 1.10 mm/yr for Mg-2Sr-Ca in comparison with 1.37 mm/yr for Mg-2Sr.The in vitro cell tests indicated that Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited higher MG63 cell viability than Mg-2Sr alloy.Furthermore,these two alloys can promote the mineralization and new bone formation without inducing any significant adverse effects and this sound osteogenic properties suggest its attractive clinical potential.展开更多
In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their micr...In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their microstructures,mechanical properties,degradation behavior,cytocompatibility in vitro and biocompatibility in vivo were studied comprehensively.Finer-gained microstructures and improved mechanical properties of these three materials after ECAP were confirmed compared to their as-cast counterparts.Moreover,after ECAP the degradation rate of pure Mg was increased while that of Mg–1 Ca or Mg–2 Sr alloys decreased compared to the ascast counterparts.Additionally,good in vitro cytocompatibility and in vivo biocompatibility of these three materials were revealed by cell cultural tests using osteoblastic MC3 T3-E1 and human mesenchymal stem cells(h MSC)and in vivo animal tests at the lateral epicondyle of SD-rats’femur.This study offers an alternative powerful avenue to achieve good comprehensive properties of magnesium-based biodegradable metals.It might also help to extend the applied range of magnesium-based biodegradable metals in orthopedic field.展开更多
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
文摘Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.
文摘Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is important, such as in the aerospace and automotive industries.However, their practical applications are still limited because of their poor corrosion resistance, low high temperature strength and ambient formability. Based on such their property shortcomings, recently degradable magnesium alloys were developed for broadening their potential applications. Considering the degradable Mg alloys for medical applications were well reviewed, the present review put an emphasis on such degradable magnesium alloys for structural and functional applications, especially the applications in the environmental and energy fields. Their applications as fracture ball in fossil energy, sacrificial anode, washing ball, and as battery anodes, transient electronics, were summarized. The roles of alloying elements in magnesium and the design concept of such degradable magnesium alloys were discussed. The existing challenges for extending their future applications are explored.
基金CSIR-IMTECH laboratory for providing the technical support in biocompatibility testing。
文摘A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.
基金supported by the National Natural Science Foundation of China (51571134)the Scientific Research Foundation of Shandong University of Science and Technology (SDUST) for Recruited Talents (2013RCJJ006)+1 种基金SDUST Research Fund (2014TDJH104)Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources
文摘Mg-Li based alloys hold much attention as potential biomedical materials due to their excellent ductility. A reduced mechanical strength and concern for biocompatibility are exhibited for Mg-Li binary alloys due to the presence of Li element. Addition of the Ca element into Mg-Li alloys leads to an improvement in mechanical strength and biocompatibility.In the present work, the microstructure, mechanical property and corrosion behaviors of three kinds(α, α+β, β) of as-extruded Mg-Li(1, 9 and 15 wt.%)-1 Ca alloys were investigated using optical microscope, X-ray diffraction(XRD), tensile,immersion and electrochemical polarization measurements.In vitro biocompatibility was evaluated by cytotoxicity assays,hemolysis and four coagluation tests. The results indicated that the Mg-1 Li-1 Ca and Mg-15 Li-1 Ca alloys were characterized by α-Mg and β-Li phases besides Mg2 Ca particles, respectively; while the Mg-9 Li-1 Ca by dual(α-Mg+β-Li) phase together with Mg2 Ca phase. The Mg-1 Li-1 Ca alloy had the highest ultimate tensile strength(UTS) and yield strength(YS)and the lowest elongation(EL) to failure(10.1±1.24%) as well.The EL for the Mg-9 Li-1 Ca alloy was the highest(52.2±0.01%).The long-term immersion tests revealed a decrease in corrosion resistance with increasing Li content. The results of cytotoxicity assays clearly showed that the Mg-Li-Ca alloys demonstrated no toxicity to L-929 cells in 10% concentration of extracts. The Mg-1 Li-1 Ca alloy also exhibited an acceptable hemolysis ratio. The results of four coagulation tests designated no sign of thrombogenicity for the Mg-Li-Ca alloys except for the Mg-15 Li-1 Ca alloy.
基金the National Natural Science Foundation of China(No.52071191,52101288)Shandong Provincial Natural Science Foundation,China(ZR2020QE009).
文摘Surgical failures,caused by postoperative infections of bone implants,are commonly met,which cannot be treated precisely with intravenous antibiotics.Photothermal therapy(PTT)and photodynamic therapy(PDT)have attracted widespread attention due to their non-invasive antibacterial effects on tissues and no bacterial resistance,which may be an excellent approach to solve infections related to bone implants for biodegradable magnesium alloys.Herein,a sodium copper chlorophyllin(SCC)with a porphyrin ring induced Ca-P coating was prepared on AZ31 magnesium alloy via layer-by-layer(LbL)assembly.The morphology and composition of the samples were characterized through field emission scanning electron microscope(FE-SEM)with affiliated energy dispersive spectrometer(EDS),X-ray diffractometer(XRD),and Fourier infrared spectrometer(FTIR)and X-ray photoelectron spectrometer(XPS)as well.Potentiodynamic polarization,electrochemical impedance spectroscopy(EIS)and hydrogen evolution experiments were employed to evaluate the corrosion behavior of the samples.Atomic absorption spectrophotometer was used to measure Cu elemental content of different immersion periods.Cytocompatibility and antibacterial performance of the coatings were probed using in vitro cytotoxicity tests(MTT assay),live/dead cell staining and plate counting method.The results showed that the obtained(Ca-P/SCC)10 coating exhibited good corrosion resistance,antimicrobial activity(especially under 808 nm irradiation)and biocompatibility.The antibacterial rates for E.coli and S.aureus were 99.9%and 99.8%,respectively;and the photothermal conversion efficiency was as high as 42.1%.Triple antibacterial mechanisms including photodynamic,photothermal reactions and copper-ions release were proposed.This coating exhibited a promising application for biodegradable magnesium alloys.
基金Supported by the Self Innovation Project of Shandong Province,China(No.012CX80106).
文摘In order to evaluate the effect of blood glucose concentration on the reliability of AZ31 magnesium alloy medical implant,the corrosion of AZ31 alloy was studied in a simulated physiological saline solution.It is found that when the glucose concentration is in the normal range of ca.1g/L,the corrosion of AZ31 alloy can be inhibited However,when the glucose concentration becomes higher like that of diabetic patients,the degradation of AZ31 alloy is significantly accelerated.Therefore,for diabetic patients,the change in glucose concentration must be taken into consideration in order to ensure the reliability ofAZ31 medical implants.
基金supported by the National Natural Science Foundation of China (81071452 and 30772182)
文摘In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static immersion test,electrochemical corrosion test,scanning electron microscopy(SEM),and energy dispersive spectroscopic(EDS) analysis,and in vitro biocompatibilities were assessed by hemolysis and cytotoxicity tests.Pure magnesium was used as control.The results of static immersion test and electrochemical corrosion test in simulated body fluid(SBF) demonstrated that the addition of alloying elements could improve the corrosion resistance.The hemolysis test found that the hemolysis rate of calcium phosphate coated NZK alloy was 4.8%,which was lower than the safe value of 5%.The cytotoxicity test indicated that NZK alloy extracts did not significantly reduce MC3T3-E1 cell viability.Hemolysis test and cytotoxicity test display excellent hemocompatibility and cytocompatibility of NZK alloy in vitro.Our data indicate that NZK alloy has excellent biocompatibility and thus can be considered as a potential degradable medical biomaterial for orthopedic applications.
基金supported by National Key Research and Development Program of China (Grant No. 2016YFC1102402)National Natural Science Foundation of China (Grant No. 51431002 and 51871004)+1 种基金NSFC/RGC Joint Research Scheme (Grant No. 51661165014)Peking University Medicine Seed Fund for Interdisciplinary Research (Grant No. BMU2018ME005)
文摘Magnesium alloys have shown great potential for their use in the medical device field, due to the promising biodegradability. However, it remains a challenge to characterize the degradation behavior of the Mg alloys in a quantitative manner. As such, controlling the degradation rate of the Mg alloys as per our needs is still hard, which greatly limits the practical application of the Mg alloys as a degradable biomaterial.This paper discussed a numerical model developed based on the diffusion theory, which can capture the experimental degradation behavior of the Mg alloys precisely. The numerical model is then implemented into a finite element scheme, where the model is calibrated with the data from our previous studies on the corrosion of the as-cast Mg-1 Ca and the as-rolled Mg-3 Ge binary alloys. The degradation behavior of a pin implant is predicted using the calibrated model to demonstrate the model’s capability. A standard flow is provided in a practical framework for obtaining the degradation behavior of any biomedical Mg alloys. This methodology was further verified via the comparison with enormous available experimental results. Lastly, the material parameters defined in this model were provided as a new kind of material property.
基金supported by the National Natural Science Foundation of China(51571134)the SDUST Research Fund(2014TDJH104).
文摘Protein exerts a critical influence on the degradation behavior of absorbable magnesium(Mg)-based implants.However,the interaction mechanism between protein and a micro-arc oxidation(MAO)coating on Mg alloys remains unclear.Hereby,a MAO coating was fabricated on AZ31 Mg alloy.And its degradation behavior in phosphate buffer saline(PBS)containing bovine serum albumin(BSA)was investigated and compared with that of the uncoated alloy.Surface morphologies and chemical compositions were studied using Field-emission scanning electron microscope(FE-SEM),Fourier transform infrared spectrophotometer(FT-IR)and X-ray diffraction(XRD).The degradation behavior of the bare Mg alloy and its MAO coating was studied through electrochemical and hydrogen evolution tests.Cytotoxicity assay was applied to evaluate the biocompatibility of Mg alloy substrate and MAO coating.Results indicated that the presence of BSA decreased the degradation rate of Mg alloy substrate because BSA(RCH(NH2)COO‾)molecules combined with Mg2+ions to form(RCH(NH2)COO)2Mg and thus inhibited the dissolution of Mg(OH)2 by impeding the attack of Cl‾ions.In the case of MAO coated Mg alloy,the adsorption of BSA on MAO coating and the formation of(RCH(NH2)COO)2Mg exhibited a synergistic effect and enhanced the corrosion resistance of the coated alloy significantly.Furthermore,cell bioactive assay suggested that the MAO coating had good viability for MG63 cells due to its high surface area.
基金supported by the National Key R&D Program of China(2018YFC1106600)A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(201463)+2 种基金Young Elite Scientists Sponsorship Program By CAST(2017QNRC001)Beijing Natural Science Foundation(2192027)the National Natural Science Foundation of China(81572109).
文摘Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone response were investigated.Compared with the binary Mg-2Sr alloys,the addition of Ca and Zn improved the in vitro and in vivo corrosion resistance.Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited more uniform corrosion and maintained the configuration of the implants 4 weeks post-implantation.The in vivo corrosion rates were 0.85 mm/yr for Mg-2Sr-Zn and 1.10 mm/yr for Mg-2Sr-Ca in comparison with 1.37 mm/yr for Mg-2Sr.The in vitro cell tests indicated that Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited higher MG63 cell viability than Mg-2Sr alloy.Furthermore,these two alloys can promote the mineralization and new bone formation without inducing any significant adverse effects and this sound osteogenic properties suggest its attractive clinical potential.
基金supported by National Key Research and Development Program of China(No.2018YFC1106600)National Natural Science Foundation of China(Grant No.51871004)+1 种基金NSFC/RGC Joint Research Scheme(Grant No.51661165014)the partial financial support in the framework of the RFBR project 20-58-S52001МНТ_а.
文摘In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their microstructures,mechanical properties,degradation behavior,cytocompatibility in vitro and biocompatibility in vivo were studied comprehensively.Finer-gained microstructures and improved mechanical properties of these three materials after ECAP were confirmed compared to their as-cast counterparts.Moreover,after ECAP the degradation rate of pure Mg was increased while that of Mg–1 Ca or Mg–2 Sr alloys decreased compared to the ascast counterparts.Additionally,good in vitro cytocompatibility and in vivo biocompatibility of these three materials were revealed by cell cultural tests using osteoblastic MC3 T3-E1 and human mesenchymal stem cells(h MSC)and in vivo animal tests at the lateral epicondyle of SD-rats’femur.This study offers an alternative powerful avenue to achieve good comprehensive properties of magnesium-based biodegradable metals.It might also help to extend the applied range of magnesium-based biodegradable metals in orthopedic field.