The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow prop...The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.展开更多
A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell we...A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.展开更多
The present work is focused on the microstructure and mechanical properties of Ti14 alloy with different semisolid deformation ratios during forging tests. The results revealed that the forging ratio had a significant...The present work is focused on the microstructure and mechanical properties of Ti14 alloy with different semisolid deformation ratios during forging tests. The results revealed that the forging ratio had a significant effect on the precipitation of the alloy. Fewer plate-shaped Ti2Cu tended to precipitate on grain boundaries with higher forging ratios, and finally the plate-shaped Ti2Cu formed precipitate-free zones along grain boundaries with a forging ratio of 75%. The precipitation on grain boundaries was found to be controlled by a peritectic reaction. Large forging ratios accelerated the extrusion of liquid and resulted in less liquid along the prior grain boundaries, which reduced the peritectic precipitation in this region and formed precipitate-free zones during re-solidification. In addition, increasing the forging ratio could accelerate dynamic recrystallization, which is favorable for improving the semisolid formability. The tensile ductility increased with increasing forging ratio, and a mixed fracture mode, involving both cleavage and dimple fracture, was observed after forging with a forging ratio of 75%, which along grain boundaries during semisolid processing. is attributed to the presence of precipitate-free zones formed展开更多
The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were invest...The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.展开更多
Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability a...Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability after fracturing.In this study,the novel extruded Mg-10Gd-3Y-0.3Zr-xNi alloys will be reported and their microstructure,mechanical and corrosion behaviors will be also studied.The results show that Ni contents influence phase precipitation behaviors.With adding 0.2 wt%Ni,a large amount of Zr_(7)Ni_(10)phases will be precipitated insidesα-Mg matrix,directly leading to degradation of strength and large corrosion rate.With further increasing Ni contents,the precipitation phases can be changed from Mg_(5)RE to 18R-LPSO structure,resulting in higher mechanical properties and faster corrosion rate.Moreover,adding Ni element also change the texture orientation by influencing the precipitation behavior of the alloys.The alloys invented in this paper have attained the highest compressive and tensile properties among all the reported dissoluble magnesium alloys.This work is beneficial in understanding the role of Ni in the magnesium alloys and provides more materials alternatives for the fabrication of dissoluble fracturing tools.展开更多
The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of M...The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.展开更多
The optical microscope, scanning electron microscope and universal testing machine are used to investigate the effect of Zn content on the microstructure, mechanical properties and fracture behavior of Mg- Mn-Zn alloy...The optical microscope, scanning electron microscope and universal testing machine are used to investigate the effect of Zn content on the microstructure, mechanical properties and fracture behavior of Mg- Mn-Zn alloy. The results indicate that fine (Mg, Mn, AI)-containing phases are distributed uniformly in the Mg-Mn alloy matrix, while small amount of (Mg, Zn)-containing phases are formed in the matrix and the grain boundary becomes coarse when 1wt.% Zn is added. As the Zn content increases, the amount of (Mg, Zn)-containing phases increases, and the grain boundary becomes coarser. When the Zn content is between 3wt.%-5wt.%, slender (Mg, Zn)-containing phases precipitate at the grain boundary. The addition of Zn could reduce the grain size and enhance the mechanical properties of the alloy matrix, and both of the effects can be enhanced by increasing the Zn content further more. When the Zn content is more than 3wt.%, grain size stops decrease, the strength cannot be improved any more and elongation decreases significantly. The fracture behavior of Mg-Mn alloy appears to be cleavage fracture, and transforms into quasi-cleavage fracture as Zn is added. When Zn content exceeded 3wt.%, large amount of (Mg, Zn)-containing phases appear on the fracture face, and act as the crack sources.展开更多
Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure...Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.展开更多
The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over...The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over aged(OA)conditions.A significant increase in hardness of 27%,yield strength of 60%and ultimate tensile strength of 19%was observed in peak aged sample as compared to solution treated sample.The improvements of mechanical strength properties are mainly associated with the metastable λ and β′precipitates.Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg_(12)Nd particles along the grain boundaries.In over aged sample,significant grain growth occurred because of dissolution of eutectic phase particles.Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature.The mode of failure of solution treated sample is transgranular,cleavage and twin boundary fractures.A mixed mode of transgranular,intergranular,cleavage and twin boundary failure is observed in both peak aged and over aged samples.展开更多
The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepare...The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepared by the RSC process and then subjected to heat treatment.The microstructure evolution and mechanical properties of AZX912 alloy during heat treatment were investigated.It was found that during solid solution treatment at 410°C,β-Mg_(17)Al_(12) phase with low melting point dissolves intoα-Mg matrix,while the connected network-like Al_2Ca phase with high melting point tends to separate gradually,and the tips of Al_2Ca phase is partially spheroidized.With the increase of solid solution time,the yield strength(YS)of AZX912 alloy decreases gradually while the ultimate tensile strength(UTS)and elongation to failure(E_f)increase continuously.Isothermal ageing at 225°C promotes the precipitation ofβ-Mg_(17)Al_(12) phase in the matrix of AZX912 alloy.The hardness reaches the peak after ageing for 96 h and the increase in hardness is about 24.8%.The precipitation ofβ-Mg_(17)Al_(12) phase during ageing treatment is beneficial to YS but harmful to E_f.The mechanism of microstructure evolution during heat treatment and its effect on mechanical properties are discussed.展开更多
The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high press...The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.展开更多
A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has ...A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has a fine size, nearly spherical morphology, and uniform distribution throughout the components. Due to the advanced microstructure and reduced level of defects, the RDC AZ91D Mg alloy exhibits an apparent improvement in mechanical properties. The quantitative metallographic investigations reveal that increasing the intensity of forced convection during the slurry preparation results in a promoted nucleation and reduced volume fi-acfion of the primary phase solidified in the slurry maker.展开更多
Radial forging(RF)is an economical manufacturing forging process,in which four dies arranged radially around the workpiece simultaneously act on the workpiece with high-frequency radial movement.In this study,a ZK60 m...Radial forging(RF)is an economical manufacturing forging process,in which four dies arranged radially around the workpiece simultaneously act on the workpiece with high-frequency radial movement.In this study,a ZK60 magnesium alloy step-shaft bar was processed under different accumulated strains by RF at350℃.The deformation behavior,microstructure evolution,and mechanical responses of this bar were systematically investigated via numerical simulations and experiments.At the early deformation stage of forging,the material undergoes pronounced grain refinement but an inhomogeneous grain structure is formed due to the strain gradient along the radial direction.The grains in different radial parts were gradually refined by increasing the RF pass,resulting in a bimodal grained structure comprising coarse(~14.1μm)and fine(~2.3μm)grains.With the RF pass increased,the initial micro-sizeβ-phases were gradually crushed and dissolved into the matrix mostly,eventually evolving to form a higher area fraction of nano-sized Zn2 Zr spheroidal particles uniformly distributed through the grain interior.The texture changed as the RF strain increased,with the c-axes of most of the deformed grains rotating in the RD.Additionally,excellent mechanical properties including higher values of tensile strengths and ductility were attained after the three RFed passes,compared to the as-received sample.展开更多
基金Project(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.
基金supported by the National Natural Science Foundation of China (Nos.51034002 and 50974038)the New Century Talents Support Program Project of the Ministry of Education of China (No.NCET-08-0097)
文摘A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.
基金financially supported by the Major State Basic Research Development Program of China (No.2007CB613807)the State Key Laboratory for Mechanical Behavior of Materials (No. 0111201)the National Natural Science Foundation of China (No. 51201019)
文摘The present work is focused on the microstructure and mechanical properties of Ti14 alloy with different semisolid deformation ratios during forging tests. The results revealed that the forging ratio had a significant effect on the precipitation of the alloy. Fewer plate-shaped Ti2Cu tended to precipitate on grain boundaries with higher forging ratios, and finally the plate-shaped Ti2Cu formed precipitate-free zones along grain boundaries with a forging ratio of 75%. The precipitation on grain boundaries was found to be controlled by a peritectic reaction. Large forging ratios accelerated the extrusion of liquid and resulted in less liquid along the prior grain boundaries, which reduced the peritectic precipitation in this region and formed precipitate-free zones during re-solidification. In addition, increasing the forging ratio could accelerate dynamic recrystallization, which is favorable for improving the semisolid formability. The tensile ductility increased with increasing forging ratio, and a mixed fracture mode, involving both cleavage and dimple fracture, was observed after forging with a forging ratio of 75%, which along grain boundaries during semisolid processing. is attributed to the presence of precipitate-free zones formed
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the Funded Projects of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(20120073120011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.
基金The National Natural Science Foundation of China(Nos.51671017,51971020)the Major State Research and Development Program of China(No.2016YFB0300801)+4 种基金Beijing Municipal Natural Science Foundation(No.2202033)Beijing Laboratory of Metallic Materials and Processing for Modern Transportationthe fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201835)the Fundamental Research Funds for the Central Universities(No.FRF-IC-19–010,FRF-IC-19–015)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(2018-Z04)。
文摘Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability after fracturing.In this study,the novel extruded Mg-10Gd-3Y-0.3Zr-xNi alloys will be reported and their microstructure,mechanical and corrosion behaviors will be also studied.The results show that Ni contents influence phase precipitation behaviors.With adding 0.2 wt%Ni,a large amount of Zr_(7)Ni_(10)phases will be precipitated insidesα-Mg matrix,directly leading to degradation of strength and large corrosion rate.With further increasing Ni contents,the precipitation phases can be changed from Mg_(5)RE to 18R-LPSO structure,resulting in higher mechanical properties and faster corrosion rate.Moreover,adding Ni element also change the texture orientation by influencing the precipitation behavior of the alloys.The alloys invented in this paper have attained the highest compressive and tensile properties among all the reported dissoluble magnesium alloys.This work is beneficial in understanding the role of Ni in the magnesium alloys and provides more materials alternatives for the fabrication of dissoluble fracturing tools.
基金financially supported by the National Nature Science Foundations of China(51464032)the National Basic Research Program of China(grant No.2010CB635106)
文摘The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.
文摘The optical microscope, scanning electron microscope and universal testing machine are used to investigate the effect of Zn content on the microstructure, mechanical properties and fracture behavior of Mg- Mn-Zn alloy. The results indicate that fine (Mg, Mn, AI)-containing phases are distributed uniformly in the Mg-Mn alloy matrix, while small amount of (Mg, Zn)-containing phases are formed in the matrix and the grain boundary becomes coarse when 1wt.% Zn is added. As the Zn content increases, the amount of (Mg, Zn)-containing phases increases, and the grain boundary becomes coarser. When the Zn content is between 3wt.%-5wt.%, slender (Mg, Zn)-containing phases precipitate at the grain boundary. The addition of Zn could reduce the grain size and enhance the mechanical properties of the alloy matrix, and both of the effects can be enhanced by increasing the Zn content further more. When the Zn content is more than 3wt.%, grain size stops decrease, the strength cannot be improved any more and elongation decreases significantly. The fracture behavior of Mg-Mn alloy appears to be cleavage fracture, and transforms into quasi-cleavage fracture as Zn is added. When Zn content exceeded 3wt.%, large amount of (Mg, Zn)-containing phases appear on the fracture face, and act as the crack sources.
基金Projects(2010A090200078,2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.
文摘The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over aged(OA)conditions.A significant increase in hardness of 27%,yield strength of 60%and ultimate tensile strength of 19%was observed in peak aged sample as compared to solution treated sample.The improvements of mechanical strength properties are mainly associated with the metastable λ and β′precipitates.Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg_(12)Nd particles along the grain boundaries.In over aged sample,significant grain growth occurred because of dissolution of eutectic phase particles.Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature.The mode of failure of solution treated sample is transgranular,cleavage and twin boundary fractures.A mixed mode of transgranular,intergranular,cleavage and twin boundary failure is observed in both peak aged and over aged samples.
基金financially supported by National Natural Science Foundation of China(No.51601076 and No.51401093)Natural Science Fund for Colleges and Universities in Jiangsu Province(No.16KJB430013)
文摘The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepared by the RSC process and then subjected to heat treatment.The microstructure evolution and mechanical properties of AZX912 alloy during heat treatment were investigated.It was found that during solid solution treatment at 410°C,β-Mg_(17)Al_(12) phase with low melting point dissolves intoα-Mg matrix,while the connected network-like Al_2Ca phase with high melting point tends to separate gradually,and the tips of Al_2Ca phase is partially spheroidized.With the increase of solid solution time,the yield strength(YS)of AZX912 alloy decreases gradually while the ultimate tensile strength(UTS)and elongation to failure(E_f)increase continuously.Isothermal ageing at 225°C promotes the precipitation ofβ-Mg_(17)Al_(12) phase in the matrix of AZX912 alloy.The hardness reaches the peak after ageing for 96 h and the increase in hardness is about 24.8%.The precipitation ofβ-Mg_(17)Al_(12) phase during ageing treatment is beneficial to YS but harmful to E_f.The mechanism of microstructure evolution during heat treatment and its effect on mechanical properties are discussed.
文摘The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.
文摘A rheo-diecasting process (RDC) was investigated for semisolid processing of an AZ91D magnesium alloy. The results of the RDC samples in as-cast state indicate that the microstructure of primary α-Mg particles has a fine size, nearly spherical morphology, and uniform distribution throughout the components. Due to the advanced microstructure and reduced level of defects, the RDC AZ91D Mg alloy exhibits an apparent improvement in mechanical properties. The quantitative metallographic investigations reveal that increasing the intensity of forced convection during the slurry preparation results in a promoted nucleation and reduced volume fi-acfion of the primary phase solidified in the slurry maker.
基金the financial support of the National Natural Science Foundation of China(Nos.U1910213 and U1610253)the Key Research and Development Program of Shanxi Province(Nos.201603D111004,201803D121026 and 201903D121088)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0614)the Taiyuan University of Science and Technology Scientific Research Initial Funding(TYUST SRIF)(No.20192002)。
文摘Radial forging(RF)is an economical manufacturing forging process,in which four dies arranged radially around the workpiece simultaneously act on the workpiece with high-frequency radial movement.In this study,a ZK60 magnesium alloy step-shaft bar was processed under different accumulated strains by RF at350℃.The deformation behavior,microstructure evolution,and mechanical responses of this bar were systematically investigated via numerical simulations and experiments.At the early deformation stage of forging,the material undergoes pronounced grain refinement but an inhomogeneous grain structure is formed due to the strain gradient along the radial direction.The grains in different radial parts were gradually refined by increasing the RF pass,resulting in a bimodal grained structure comprising coarse(~14.1μm)and fine(~2.3μm)grains.With the RF pass increased,the initial micro-sizeβ-phases were gradually crushed and dissolved into the matrix mostly,eventually evolving to form a higher area fraction of nano-sized Zn2 Zr spheroidal particles uniformly distributed through the grain interior.The texture changed as the RF strain increased,with the c-axes of most of the deformed grains rotating in the RD.Additionally,excellent mechanical properties including higher values of tensile strengths and ductility were attained after the three RFed passes,compared to the as-received sample.