期刊文献+
共找到660篇文章
< 1 2 33 >
每页显示 20 50 100
Effects of Ho on the microstructure and mechanical properties of Mg-Zn-Ho-Zr magnesium alloys 被引量:9
1
作者 LI Daquan WANG Qudong DING Wenjiang 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期131-136,共6页
The microstructure and mechanical properties of Mg-Zn-Ho-Zr alloys have been investigated in detail. The grain size of the as-cast Mg-Zn-Ho-Zr alloy was greatly decreased by the addition of Ho, and the grain growth du... The microstructure and mechanical properties of Mg-Zn-Ho-Zr alloys have been investigated in detail. The grain size of the as-cast Mg-Zn-Ho-Zr alloy was greatly decreased by the addition of Ho, and the grain growth during solution treatment was suppressed by Mg-Zn-Ho phases formed at grain boundaries. These thermally stable Mg-Zn-Ho phases could not completely dissolve into the matrix dur- ing solution treatment, and the strengthening effect of solution-plus-ageing treatment weakened. The addition of Ho can greatly enhance the high-temperature elongation of the Mg-Zn-Ho-Zr alloy, but the increase of high-temperature tensile strength was just a little. 展开更多
关键词 magnesium alloys HOLMIUM rare earth additions heat treatment microstmcture mechanical properties
下载PDF
Latest research advances on magnesium and magnesium alloys worldwide 被引量:191
2
作者 Jiangfeng Song Jia She +1 位作者 Daolun Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE 2020年第1期1-41,共41页
In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologie... In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology. 展开更多
关键词 Cast magnesium alloys Wrought magnesium alloys Functional magnesium materials Cast and processing technologies Corrosion and surface treatment International standard
下载PDF
High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium 被引量:8
3
作者 杨友 刘勇兵 +1 位作者 秦淑影 方懿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期591-595,共5页
The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and f... The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa ( 1% Ce) and 105.5 MPa (2 % Ce), respectively, at the number of cycles to failure, Nf = 1 × 10^7. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple. 展开更多
关键词 die-cast magnesium alloy CERIUM high-cycle fatigue fracture surface analysis rare earths
下载PDF
Effect of surface treatment on the structure and high-rate dischargeability properties of AB_5-type hydrogen storage alloy 被引量:3
4
作者 张沛龙 王秀丽 +1 位作者 涂江平 陈国良 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期510-513,共4页
Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirr... Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability. 展开更多
关键词 hydrogen storage alloys surface treatment electrochemical properties high-rate dischargeability rare earths
下载PDF
State-of-art on corrosion and protection of magnesium alloys based on patent literatures 被引量:10
5
作者 吴超云 张津 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期892-902,共11页
The state-of-art of patented technologies for surface treatment of magnesium alloys including chemical conversion electrochemical plating, surface coating, and multiple-step surface treatment technologies was reviewed... The state-of-art of patented technologies for surface treatment of magnesium alloys including chemical conversion electrochemical plating, surface coating, and multiple-step surface treatment technologies was reviewed and analyzed. Some new techniques were introduced. It was found that conversion film technologies account for a large amount of proportion among the patents of surface treatment. These technologies are also the main technologies used in industry. As the structures and service conditions of Mg alloy parts are of variety, a single surface-treatment process can not satisfy all requirements. Combined surface-treatment techniques can meet the needs in different applications. More and more new and environmental friendly techniques were invented. Factors such as capital investment, ease of manufacturing, and coating performances have to be considered when developing a coating technology for the industrial application. 展开更多
关键词 CORROSION PROTECTION magnesium alloys surface treatment PATENT
下载PDF
Improved Corrosion Resistance of Magnesium Alloys AZ31 and AZ91HP by High Current Pulsed Electron Beam Treatment
6
作者 HAOSheng-zhi GAOBo +1 位作者 ZHOUJi-yang DONGChuang 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期1037-1040,共4页
Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl sol... Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl solution, showing remarkably improvement as manifested by polarization curves. According to EPMA analysis, the intermetallic Mg17Al12 in the surface layer of AZ91HP sample almost disappeared after the treatment of HCPEB, leaving the surface layer in a state of supersaturated solid solution. Both the augmentation of aluminum content and the formation of supersaturated structure in the surface layer are believed to contribute to the improved corrosion resistance of AZ31 and AZ91HP. 展开更多
关键词 AZ31 AZ91HP 镁合金 耐蚀性 HCPEB 热处理
下载PDF
Stress corrosion cracking of magnesium alloys:A review 被引量:3
7
作者 Jiahao Jiang Xue Geng Xiaobo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1906-1930,共25页
Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.How... Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.However,the chemical stability of Mg alloys is poor,especially in the corrosive medium environment with high stress corrosion sensitivity,which causes sudden damage to structural components and restricts their application field.In recent years,owing to the increasing failure rate of engineering structures caused by stress corrosion of Mg alloys,it has become necessary to understand and pay more attention to the stress corrosion cracking(SCC)behavior of Mg alloys.In this paper,the SCC mechanisms and test methods of Mg alloys have been summarized.The recent research progress on SCC of Mg alloys has been reviewed from the aspects of alloying,preparation process,surface modification,corrosive medium,and strain rate.More importantly,future research trends in the field of SCC of Mg alloys have also been proposed. 展开更多
关键词 magnesium alloys Stress corrosion cracking ALLOYING Preparation process Corrosion media surface treatment
下载PDF
Quick Surface Treatment of AZ31B by AC Micro-arc Oxidation
8
作者 王胜林 张鹏 +2 位作者 DU Yunhui WANG Yujie HAO Zhiqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期773-779,共7页
In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH t... In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy. 展开更多
关键词 AZ31B deformation magnesium alloy quick surface treatment AC micro-arc oxidation
下载PDF
Applications of magnesium alloys for aerospace:A review 被引量:7
9
作者 Jingying Bai Yan Yang +5 位作者 Chen Wen Jing Chen Gang Zhou Bin Jiang Xiaodong Peng Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3609-3619,共11页
With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe ... With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe aviation environment, the strength, corrosion resistance and electrical conductivity of magnesium alloy materials need to be further improved. Many scholars are committed to studying higher comprehensive mechanical properties. Besides, they have studied surface treatment processes with space application characteristics, such as high emissivity oxidation and high anti-corrosion electroplating. To further improve the safety and reliability of magnesium alloys and expand their applications, this paper discusses several kinds of magnesium alloys and summarizes their research progress. The whole manuscript should be revised by an expert who has more experience on English writing. At the same time, the surface treatments of magnesium alloy materials for aerospace are analyzed. Besides, the application of magnesium alloy in aerospace field is summarized. With the in-depth research of many scholars, the improvement of material properties and the development of surface protection and functional technology, it is believed that magnesium alloys will be used in more and more aerospace applications and make more contributions to the aerospace field. 展开更多
关键词 magnesium alloy AEROSPACE APPLICATION REVIEW surface treatment
下载PDF
Effect of multifunction cavitation using phosphoric acid on fatigue and surface properties of AZ31 magnesium alloy
10
作者 Shunta Matsuoka Fumihiro Kato +2 位作者 Toshihiko Yoshimura Masataka Ijiri Shoichi Kikuchi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1996-2005,共10页
Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to fo... Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties. 展开更多
关键词 magnesium alloy Multifunction cavitation surface modification fatigue Residual stress
下载PDF
Effect of heat treatment on microstructures and mechanical properties of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy 被引量:9
11
作者 曹樑 刘文才 +4 位作者 李中权 吴国华 肖旅 王少华 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期611-618,共8页
The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were invest... The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture. 展开更多
关键词 Mg-10Gd-3Y-0.5Zr magnesium alloy heat treatment FRACTURE microstructure mechanical property
下载PDF
Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatments 被引量:3
12
作者 Gui-rong Li Hong-ming Wang +3 位作者 Yun Cai Yu-tao Zhao Jun-jie Wang Simon P.A. Gill 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期896-901,共6页
AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize... AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8-10μm to 2-4μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50-100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%. 展开更多
关键词 magnesium alloys cryogenic treatment MICROSTRUCTURE mechanical properties
下载PDF
Improving the fatigue property of welded joints for AZ31 magnesium alloy by ultrasonic peening treatment 被引量:10
13
作者 张金旺 王文先 +2 位作者 张兰 慕伟 许并社 《China Welding》 EI CAS 2008年第2期20-26,共7页
The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated a... The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated at the weld toe by the UPT process. The test results show that the fatigue strength of the base metal of AZ31 magnesium alloys is 57.8 MPa, and those of the fillet joint and the transverse cross joint are respectively 20. 0 MPa and 17.2 MPa at 2 × 10^6 cycles. The fatigue strengths of two kinds of welded joints treated by the UPT are respectively 30. 3 MPa and 24. 7 MPa, which have been improved by 51.5% and 43.6%, respectively. The fatigue life of the fillet joint specimens is prolonged by about 2. 74 times and the fatigue life of the transverse cross joint specimens is prolonged by about 1.05 times when the stress range is at 40. 0 MPa. 展开更多
关键词 AZ31 magnesium alloy fatigue property welded joint ultrasonic peening treatment
下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:9
14
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 Wire arc additive manufacturing AZ80M magnesium alloy Heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
Effects of heat treatment on the microstructure and mechanical properties of ZA84 magnesium alloy 被引量:5
15
作者 Mingbo Yang Liang Bai +1 位作者 Fusheng Pan Hongjun Hu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期747-752,共6页
The effects of heat treatment on the microstructure and mechanical properties of ZA84 (Mg-8Zn-4Al-0.25Mn) alloy were investigated. The results indicate that the as-cast microstructure of the alloy is mainly composed... The effects of heat treatment on the microstructure and mechanical properties of ZA84 (Mg-8Zn-4Al-0.25Mn) alloy were investigated. The results indicate that the as-cast microstructure of the alloy is mainly composed of α-Mg matrix and two different morphologies of precipitates (continuous and quasi-continuous Mg32(Al,Zn)49 phases and isolated Mg5Al2Zn2 phases). After solid solution treatment at 345℃, the Mg32(Al,Zn)49 phases change from continuous and quasi-continuous net to disconnected acute angle shape, and parts of second phases sphericize. The optimum heat treatment condition for the alloy is solution treatment at 345℃ for 48 h and water quenching, then aging treatment at 200℃ for 12 h and atmosphere cooling. Under the optimum condition, the ulti- mate tensile strength and yield strength of the alloy can be imoroved, but the elongation is not effected much bv heat treatment. 展开更多
关键词 ZA84 magnesium alloy heat treatment MICROSTRUCTURE mechanical properties PRECIPITATES
下载PDF
Effects of cryogenic treatment on mechanical properties of extruded Mg-Gd-Y-Zr(Mn) alloys 被引量:7
16
作者 熊创贤 张新明 +3 位作者 邓运来 肖阳 邓桢桢 陈部湘 《Journal of Central South University of Technology》 EI 2007年第3期305-309,共5页
The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), ... The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature. 展开更多
关键词 magnesium alloy cryogenic treatment mechanical property microstructure
下载PDF
Effects of solution and aging treatments on microstructures and mechanical properties of AZ61 magnesium alloy welded joints 被引量:2
17
作者 Shen, Jun Xu, Nan 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期12-16,共5页
The effects of solution and aging treatments on the microstructures and mechanical properties of tungsten inert gas arc welded AZ61 magne-sium alloy joints were investigated by microstructural observations,microhardne... The effects of solution and aging treatments on the microstructures and mechanical properties of tungsten inert gas arc welded AZ61 magne-sium alloy joints were investigated by microstructural observations,microhardness tests and tensile tests.The results showed that the solution treatment led to the β-Mg17Al12 particles dissolved into the α-Mg grains.Hence,the microhardness of the fusion zone and the ultimate tensile strength of the welded joints were the lowest.With the increase of the aging temperature,the volume fraction of the β-Mg17Al12 particles in the fusion zone increased and this enhanced the microhardness of the fusion zone gradually.Also,the elongation of the welded joints was in-creased slightly with the increase of the volume fraction of the β-Mg17Al12 particles.However,the ultimate tensile strength of the welded joints increased at first and dropped at 190 ?C due to cracks formed at the boundaries of the β-Mg17Al12 particles. 展开更多
关键词 magnesium alloy heat treatment MICROSTRUCTURE mechanical properties
下载PDF
Fatigue properties of friction stir welded butt joint and base metal of MB8 magnesium alloy 被引量:1
18
作者 何柏林 熊磊 +3 位作者 于影霞 吕宗敏 满华 江民华 《China Welding》 EI CAS 2016年第1期1-7,共7页
The fatigue properties of friction stir welded (FSW) butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM2OOK2-070-IA fatigue testing machin... The fatigue properties of friction stir welded (FSW) butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM2OOK2-070-IA fatigue testing machine for both FSW butt joint and base metal specimens. The fatigue fractures were observed and analyzed using a scanning electron microscope of JSM-6063LA type. The experimental results show that the fatigue performance of the FSW butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (2 x 106) of base metal and welded butt joint is about 77.44 MPa and 49. 91 MPa, respectively. The conditional fatigue limit (2 x 106 ) of the welded butt joint is 64.45% of that of base metal. The main reasons are that the welding can lead to stress concentration in the flash area, tensile welding residual stress in the welded joint( The residual stress value was 30. 5 MPa), as well as the grain size is not uniform in the heat-affected zone. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, the fracture type of the FSW butt joint belongs to a brittle fracture. 展开更多
关键词 MB8 magnesium alloy friction stir welded butt joint fatigue property fatigue fracture
下载PDF
Effect of heat treatment on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Mg-2.7Nd-0.2Zn-0.4Zr alloy 被引量:4
19
作者 章晓波 薛亚军 王章忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2343-2350,共8页
Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea... Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly. 展开更多
关键词 biodegradable magnesium alloy mechanical properties in vitro degradation behavior heat treatment
下载PDF
Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening 被引量:11
20
作者 Shu-xu WU Shou-ren WANG +4 位作者 Gao-qi WANG Xiu-chun YU Wen-tao LIU Zheng-qi CHANG Dao-sheng WEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1641-1652,共12页
To enhance the mechanical properties and corrosion resistance of magnesium alloys,high-energy shot peening(HESP)was used.According to the results,the in-situ surface nanocrystallization(ISNC)microstructure was fabrica... To enhance the mechanical properties and corrosion resistance of magnesium alloys,high-energy shot peening(HESP)was used.According to the results,the in-situ surface nanocrystallization(ISNC)microstructure was fabricated on the magnesium alloy surface,and its formation mechanism was the coordination among twins,dislocations,subgrain boundary formation and dynamic recrystallization.Under the released surface stress of sample,the residual compressive stress and microhardness rose,thus enhancing compactness of the surface passivation film Mg(OH)2.Besides,the corrosion rate dropped by 29.2% in maximum.In the polarization curve,the maximum positive shift of the corrosion potential of sample was 203 mV, and the corrosion current density decreased by 31.25% in maximum.Moreover,the compression resistance and bending resistance of the bone plate were enhanced,and the maximum improvement rates were 18.2% and 23.1%,respectively.Accordingly,HESP significantly enhanced mechanical properties and corrosion resistance of magnesium alloys. 展开更多
关键词 magnesium alloys high energy shot peening in-situ surface nanocrystallization mechanical properties corrosion properties
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部