期刊文献+
共找到1,050篇文章
< 1 2 53 >
每页显示 20 50 100
Preparation and Properties of Magnesium Oxysulfide Cement Based Foam Board Absorbing Material
1
作者 刘军 崔宝栋 庞博 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期118-125,共8页
In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium... In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium cement foamed sheet for improvement of electromagnetic industry,this paper uses the excellent microwave absorbing properties of ferrite and the modified sulfur oxide magnesium cement foam board,and discusses the microwave absorbing performance,aiming at improving the electromagnetic pollution in daily life.The effects of ferrite and silicon carbide doping on microwave absorption properties of modified magnesium oxysulfate cement were studied.At the same time,the wave absorbing properties of the corresponding samples were detected by bow method,and the causes of the corresponding phenomena were analyzed by scanning electron microscopy (SEM).The results show that the lowest reflectance of the material is-17.9 dB at 34.1 GHz and the average reflectance of the whole band is-15.9 dB under the target frequency band of 26.5-40 GHz.Under the action of external magnetic field,the absorbing particles are affected by magnetization force,magnetic dipole and resistance coupling,and play the absorbing effect in the cement base solidified completely in the electromagnetic field environment.The lowest reflectance is-17.3dB at 36.4GHz and the average reflectance is-14.3dB for the whole band. 展开更多
关键词 magnesium oxysulfide cement silicon carbide FERRITE absorption properties
下载PDF
Non-isothermal Kinetic Analysis on the Thermal Decomposition of the Phase 517 from Hydration Product of Magnesium Sulfide Cement 被引量:1
2
作者 CUI Baodong GUAN Yan BI Wanli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期374-380,共7页
In order to better understand the thermodynamic properties of magnesium oxysulfate(MOS)cement,pure reagent was analyzed to prepare magnesium sulfide cement,non-isothermal kinetics calculation of the main hydration pro... In order to better understand the thermodynamic properties of magnesium oxysulfate(MOS)cement,pure reagent was analyzed to prepare magnesium sulfide cement,non-isothermal kinetics calculation of the main hydration products was also carried out,and the conversion process of magnesium sulfide cement 517 phase at different temperatures was investigated.Composition of magnesium sulfide cement prepared was measured by XRD technique,and decomposed by a comprehensive thermal analyzer,and DSC curves of magnesium sulfide cement under different temperature rising rates were processed by Kinssinger method and Dolye-Ozawa method.According to the TG-DSC curves of magnesium sulfide cement,the thermal decomposition reaction process can be divided into five stages under normal conditions.The DSC curve was processed by Kinssinger method and Dolye-Ozawa method,and the kinetic analysis was carried out to calculate the 517 phase activation energy of magnesium sulfide cement.The three stages correspond to different activation energies.Therefore,flame retardant mechanism and thermal decomposition mechanism of magnesium sulfide cement based materials are deduced. 展开更多
关键词 magnesium sulfide cement comprehensive thermal analysis nonisothermal dynamics 517 phase
下载PDF
Preparation and Performance of Chitosan/Citric Acid Modified Magnesium Oxychloride Cement
3
作者 SONG Zijian LIU Lang +4 位作者 YU Peipei ZHANG Yunsheng LI Xincheng CHU Hongqiang JIANG Linhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1326-1334,共9页
Citric acid(CA)and chitosan(CS)were employed to modify magnesium oxychloride cement(MOC).Multiscale measurements were implemented to study the properties of the modified MOC pastes.Results show that the addition of CA... Citric acid(CA)and chitosan(CS)were employed to modify magnesium oxychloride cement(MOC).Multiscale measurements were implemented to study the properties of the modified MOC pastes.Results show that the addition of CA/CS significantly changes the content of each phase and the microstructure of phase 5.The single addition of CA can effectively increase the compressive strength of MOC after 7 d curing,while CS exerts no obvious effect on the compressive strength.As to the simultaneous addition of CA and CS,the compressive strength of MOC gradually decreases with the increasing content of CS.Interestingly,mixing CA and CS significantly enhances the water resistance of MOC and decreases the degradation rate of MOC in phosphate buffered solution,which can be ascribed to the low specific surface area of the plate-like crystals in the modified MOC and the reduction of pores in the structure. 展开更多
关键词 magnesium oxychloride cement MODIFIER citric acid CHITOSAN
下载PDF
Long-term Properties of Aeolian Sand-magnesium Oxychloride Cement Composites and Its Engineering Application
4
作者 常成功 DONG Jinmei +4 位作者 ZHENG Weixin WEN Jing 阎峰云 肖学英 AN Lingyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期842-848,共7页
In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as... In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future. 展开更多
关键词 magnesium oxychloride cement aeolian sand mechanical properties micro morphology phase composition
下载PDF
Compressive Strength of Basic Magnesium Sulfate Cement Coral Aggregate Concrete(MCAC)on Non-Destructive Testing
5
作者 GUO Jianbo YU Hongfa +3 位作者 MA Haiyan CHANG Yun MEI Qiquan ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1086-1095,共10页
Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultras... Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not. 展开更多
关键词 non-destructive testing basic magnesium sulfate cement coral aggregate corcrete ultrasonic pulse velocity rebound hammer specific test strength curves
下载PDF
Influence of MgO/MgCl_2 Molar Ratio on Phase Stability of Magnesium Oxychloride Cement 被引量:8
6
作者 巴恒静 关辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期476-481,共6页
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with differ... Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation. 展开更多
关键词 magnesium oxychloride cement molar ratio phase stability hydration reaction
下载PDF
Effects of Citric Acid on Hydration Process and Mechanical Properties of Thermal Decomposed Magnesium Oxychloride Cement 被引量:8
7
作者 文静 余红发 +2 位作者 LI Ying WU Chengyou DONG Jinmei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期114-118,共5页
In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical ... In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical properties of TDMOC was studied. The hydration heat release at initial 24 h and strengths at 3, 7, and 28 days of TDMOC specimens were conducted. The hydration products and paste microstructure were analyzed by XRD, FT-IR and SEM, respectively. The results showed that citric acid can not only reduce the 24 h hydration heat release and delay the occurring time of second peak of TDMOC, but also produce more 5Mg(OH)z.MgC12.SH20 and less Mg(OH)2 in hydration process of TDMOC. More perfect and slender crystals were observed in the microstructure of the TDMOC pastes with citric acid. The results demonstrated that citric acid as an additive of TDMOC can decrease the hydration heat release and increase the compressive strength and flexural strength of TDMOC. The possible mechanism for the strength enhancement was discussed. 展开更多
关键词 thermal decomposed magnesium oxychloride cement citric acid hydration heat STRENGTH
下载PDF
Effect of Borax on Hydration and Hardening Properties of Magnesium and Pottassium Phosphate Cement Pastes 被引量:12
8
作者 杨建明 钱春香 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期613-618,共6页
Magnesium and potassium phosphate cement (MKPC) sample were prepared by mixing dead burnt MgO powder, potassium phosphate and different dosages of retarder borax to investigate the effect of borax on its hydration a... Magnesium and potassium phosphate cement (MKPC) sample were prepared by mixing dead burnt MgO powder, potassium phosphate and different dosages of retarder borax to investigate the effect of borax on its hydration and hardening characteristics. The pH value, fluidity, hydration temperature and strength development of MKPC paste were investigated, and the mineralogical composition and microstructural morphology of its hydration products were analyzed. The experimental results indicated that, within a certain dosage, borax caused an endothermal effect for MKPC paste, which decreased the early hydration rate of MKPC paste, increased the fluidity of MKPC paste. Thus, strength and micro-morphology of hardened MKPC are affected. It can be concluded that borax in MKPC paste retards the early hydration rate of MKPC paste by forming a film onto surface of MgO, decreasing the temperature and increasing the pH value of the system. As borax dosage varying, different factors may dorminate the effects. 展开更多
关键词 magnesium and potassium phosphate cement (MKPC) HYDRATION FLUIDITY strength
下载PDF
Influence of Fly Ash and Silica Fume on Water-resistant Property of Magnesium Oxychloride Cement 被引量:5
9
作者 李成栋 于红发 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期721-724,共4页
By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on... By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel. 展开更多
关键词 magnesium oxychloride cement fly ash silica fume water resistance
下载PDF
The Improvement Effects of NaH_(2)PO_(4) and KH_(2)PO_(4) on the Properties of Magnesium Oxysulfate Cement 被引量:3
10
作者 王南 余红发 +4 位作者 BI Wanli GUAN Yan GONG Wei ZHANG Na WU Chengyou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第1期50-57,共8页
Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement... Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement were characterized using X-ray diffraction (XRD),thermogravimetric analysis (TG-DSC),Flourier transform infrared spectroscopy (FT-IR),mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM).It is found that both NaH_(2)PO_(4) and KH_(2)PO_(4) lead to an increase in the compressive strength and an improvement in the volume stability of MOS cement.The XRD,MIP and SEM results show that the addition of NaH_(2)PO_(4) or KH_(2)PO_(4) does not change the phase composition of MOS cement but promotes the formation of strength phase of 5Mg(OH)_(2)·MgSO_(4)·7H_(2)O (5·1·7 phase).This phase brings a considerable improvement in the microstructure of MOS cement,which has a positive effect on the properties of MOS cement. 展开更多
关键词 magnesium oxysulfate cement PHOSPHATES compressive strength volume stability microstructure
下载PDF
THE PROPERTIES OF SILICA FUME-MAGNESIUM OXYCHLORIDE CEMENT MATERIALS 被引量:4
11
作者 H.F.Yu 1) ,P.Q.Liu 1) and W.H.Wang 2) 1) Department of Materials Science and Engineering, Shenyang Architectural and Civil Engineering Institute,Shenyang 110015,China 2) Department of Airport, CAAC Eastnorth Management, Shenyang 110043,Chin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1038-1040,共3页
The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC p... The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC paste was invesigated in this study. It is shown that when 30 weight percent of silica fume is added to the MOC paste, a high strength and water resisting new material with 112MPa compressive strength and 1 00 water resisting coefficient could by obtained. 展开更多
关键词 silica fume magnesium oxychloride cement (MOC) compressive strength water resistance
下载PDF
Effects of EVA Latex on the Properties of Glass-fiber/Magnesium-oxychloride Cement Composites 被引量:2
12
作者 汪水平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期138-142,共5页
The effects of Ethylene-Vinyl Acetate copolymer (EVA) latex as an additive or a glass fiber surface modifier on the properties of Glass-Fiber ( GF )/ Magnesium Oxychloride Cement (MOC) composites was studied. Th... The effects of Ethylene-Vinyl Acetate copolymer (EVA) latex as an additive or a glass fiber surface modifier on the properties of Glass-Fiber ( GF )/ Magnesium Oxychloride Cement (MOC) composites was studied. The mechanical properties, water resistance aud aging resistance of the cured GF/ MOC composites were estimated and chemical ingredients analysis and morphological study of the GF/ MOC composites were also performed. It is found that EVA added to the MOC matrix could substantially improve the interfacial adhesion, water resistance aud aging resistance of GF/ MOC composites. EVA treatment on glass fibers resulted in decreasing initial flexural strength of GF/ MOC composites while enhancing the soft coefficients. In addition, the drying time and dilution of the EVA treatment on glass fibers also had an otwioas effect on the properties of GF/ MOC composites. However, excessive EVA interfered with the growth of the 5 Mg( OH)2· MgCl2 ·8H2O crystal and the properties of GF / MOC composites. 展开更多
关键词 glass-fiber/ magnesium oxychloride cement ethylene- vinyl acetate interfacial adhesion soft coefficient
下载PDF
Effects of Calcination Temperature of Boron-Containing Magnesium Oxide Raw Materials on Properties of Magnesium Phosphate Cement as a Biomaterial 被引量:2
13
作者 董金美 余红发 +6 位作者 XIAO Xueying LI Ying WU Chengyou WEN Jing TAN Yongshan CHANG Chenggong ZHENG Weixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期671-676,共6页
A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw ... A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw materials and the effects of calcination temperature on the performance of MPBC. The phase composition and microstructure of the B-MgO raw materials and the hydration products (KMgPO4.6H2O) of MPBC were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that ionic impurities and the levels of toxic elements were sufficiently low in B-MgO raw materials to meet the medical requirements for MgO (Chinese Pharmacopeia, 2O10 Edition) and for hydroxyapatite surgical implants (GB23101.1-2O08). The temperature of B-MgO calcination had a marked influence on the hydration and hardening of MPBC pastes. Increasing calcination temperature prolonged the time required for the MPBC slurry to set, significantly decreased the hydration temperature, and prolonged the time required to reach the highest hydration temperature. However, the compressive strength of hardened MPBC did not increase with higher calcination temperatures. In the 900-1 000 ~C temperature range, the hardened MPBC had a higher compressive strength. Imaging analysis suggested that the setting time and the highest hydration temperature of MPBC pastes were dependent on the size and crystal morphology of the B-MgO materials. The production and microstructure compactness of KMgPOa'6H2O, the main hydration product, determined the compressive strength. 展开更多
关键词 magnesium phosphate bone cement boron-containing magnesium oxide calcination temperature
下载PDF
Preparation and properties of magnesium oxysulfate cement and its application as lost circulation materials 被引量:2
14
作者 Kai-Xiao Cui Guan-Cheng Jiang +2 位作者 Li-Li Yang Zheng-Qiang Deng Lei Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1492-1506,共15页
Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less... Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems. 展开更多
关键词 magnesium oxysulfate cement Lost circulation material Severe loss Acid soluble plug Formation damage
下载PDF
Effects of H_3PO_4 and Ca(H_2PO_4)_2 on mechanical properties and water resistance of thermally decomposed magnesium oxychloride cement 被引量:13
15
作者 文静 余红发 +3 位作者 李颖 吴成友 董金美 郑利娜 《Journal of Central South University》 SCIE EI CAS 2013年第12期3729-3735,共7页
The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement(TDMOC) pastes were studied. The mineral composition, hydration prod... The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement(TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3 PO4 and Ca(H2 PO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient(Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)2 ·MgCl2 ·8H2 O in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC. 展开更多
关键词 Ca(H2PO4)2 氯氧镁水泥 H3PO4 力学性能 耐水性 热分解 FT-IR 水化过程
下载PDF
Microstructure and Properties of Cement Foams Prepared by Magnesium Oxychloride Cement 被引量:6
16
作者 王发洲 YANG Lu +1 位作者 GUAN Lingyue HU Shuguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期331-337,共7页
Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uen... Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water. 展开更多
关键词 magnesium oxychloride cement foams pore size distribution weibull distribution function cell walls phase compositions properties
下载PDF
The Salt Attack Performance of Magnesium Oxychloride Cement Exposure to Three Kinds of Brines 被引量:3
17
作者 黄青 LI Ying +8 位作者 CHANG Chenggong WEN Jing DONG Jinmei ZHENG Weixin A Danchun LIU Pan DONG Fei ZHOU Yuan 肖学英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期155-166,共12页
Salt attack performance of magnesium oxychloride cement(MOC) in brine was investigated from the viewpoints of strength development and strength coefficient. Microstructure was studied using quantitative X-ray diffract... Salt attack performance of magnesium oxychloride cement(MOC) in brine was investigated from the viewpoints of strength development and strength coefficient. Microstructure was studied using quantitative X-ray diffraction(QXRD), thermogravimetry(TG) and scanning electron microscopy(SEM). The results show that MOC mortars have outstanding salt attack performance after aging brine and raw brine immersion. The salt attack coefficients of MOC mortars are higher than 0.8, which is qualified for application in saline soil and salt lake area. The reason is that salt brine solution enters into the voids of MOC and plays a role of toughening and strengthening in the MOC. 展开更多
关键词 magnesium OXYCHLORIDE cement SALT ATTACK PERFORMANCE SALINE soil SALT lake area
下载PDF
Effect of raw materials and proportion on mechanical properties of magnesium phosphate cement 被引量:1
18
作者 Yangzezhi Zheng Yang Zhou +1 位作者 Xiaoming Huang Haoyuan Luo 《Journal of Road Engineering》 2022年第3期243-251,共9页
Magnesium phosphate cement (MPC) cementitious material is a phosphate cement-based material with strengthformed by a serious of acid-base neutralization reactions among magnesium oxide, phosphate retarder and water,wh... Magnesium phosphate cement (MPC) cementitious material is a phosphate cement-based material with strengthformed by a serious of acid-base neutralization reactions among magnesium oxide, phosphate retarder and water,which has a high early strength and a broad application prospect in the field of pavement rehabilitation. Thisreview collects and organizes the latest progress in the field of research on the influencing factors of mechanicalproperties of magnesium phosphate cementitious materials worldwide in recent years, and discusses the possibilitiesof application in airport engineering.The type of phosphate has a great influence on the reaction products, and the strength of the reaction productsof ammonium salt is higher. Borax is the most commonly used retarder, and the retarding effect is related to theratio of boron to magnesium. However, borax retarders have an adverse effect on the strength of MPC. In terms ofthe influence of mineral admixtures on the properties of MPC, fly ash, silica fume and metakaolin, as commonmineral admixtures, have a positive influence on the mechanical properties of MPC, but the mechanism anddegree of the influence of the three materials on the strength of MPC are slightly different;Aggregates can alsoimprove the volume stability and mechanical properties of MPC by forming skeleton structure and slowing downthe exothermic reaction. In fiber reinforced MPC matrix, steel fiber is the most widely used and the bondingperformance between special-shaped steel fiber and MPC matrix is higher than that of straight fiber;basalt fiberhas also been proved to be used to improve the mechanical properties of MPC system. 展开更多
关键词 magnesium phosphate cement Mechanical properties Proportion of mixture Fiber reinforcement
下载PDF
Frost Resistance of Magnesium Oxychloride Cement Mortar Added with Highland Barley Straw Ash
19
作者 曹锋 乔宏霞 +2 位作者 WANG Penghui LI Weijia LI Yuanke 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期912-921,共10页
In order to study the influence of highland barley straw ash (HBSA) prepared under certain conditions on the durability of magnesium oxychloride cement mortar (MOCM) under freeze-thaw damage,rapid freeze-thaw cycle te... In order to study the influence of highland barley straw ash (HBSA) prepared under certain conditions on the durability of magnesium oxychloride cement mortar (MOCM) under freeze-thaw damage,rapid freeze-thaw cycle tests were carried out firstly.The relative mass evaluation parameters and the relative compressive strength evaluation parameters,which represent the degradation of freeze-thaw resistance,were used as the indices to study the degradation rule of MOCM.Secondly,nuclear magnetic resonance (NMR) tests were carried out on MOCM under different freeze-thaw cycles to analyze the pore diameter changes in the freeze-thaw process.The microstructure of MOCM was tested by Fourier transform infrared spectroscopy (FTIR),X-ray diffraction (XRD) and scanning electron microscopy (SEM),and then the effect mechanism of HBSA on the anti-freezing performance of MOCM was revealed.Finally,the two-parameter Weibull distribution function was used to analyze the reliability of durability degradation of MOCM added with HBSA under freeze-thaw cycles.The specific conclusions are as follows:With the increase of HBSA's addition,the freeze-thaw resistance of MOCM increase firstly and then decrease.When the addition of HBSA is 10%,the decay rate of relative mass evaluation parameters and relative compressive strength evaluation parameters is the slowest,and the frost resistance is the best.The proportion of harmful pores and more harmful pores in MOCM added with 10% HBSA decreases by 25.11% and 21.34%,compared with that without HBSA before and after freeze-thaw cycles.A lot of magnesium silicate hydrate (M-S-H) gels are generated in MOCM with HBSA content of 10%,which fills part of the pores,so that the proportion of harmful pores and more harmful pores is the lowest.The Weibull function can be effectively applied to the reliability analysis of the freeze-thaw cycle of MOCM added with HBSA,and the theoretical results are in good agreement with the experimental results. 展开更多
关键词 magnesium oxychloride cement highland barley straw ash freeze-thaw resistance pore diameter distribution MICROSTRUCTURE RELIABILITY
下载PDF
RESEARCH ON THE RHEOLOGY OF MAGNESIUM OXYCHLORIDE CEMENT Ⅰ—RHEOLOGICAL BEHAVIOR
20
作者 H.F.Yu and P.Q.Liu Department of Materials Science and Engineering, Shenyang Architectural and Civil Engineering Institute, Shenyang 110015, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1041-1044,共4页
The rheology of magnesium oxychloride cement (MOC) was presented. The rheological properties and thixotropic behaviors of the MOC pastes were determined with a rotating viscometer. The results have showed significant ... The rheology of magnesium oxychloride cement (MOC) was presented. The rheological properties and thixotropic behaviors of the MOC pastes were determined with a rotating viscometer. The results have showed significant difference between the MOC and portland cement in terms of their rheological behaviors. The yield stress and plastic viscosity of the MOC pastes are much larger than those of portland cement pastes. Therefore, the MOC has a better cohesive property. 展开更多
关键词 magnesium oxychloride cement(MOC) rheological property thixotropic behavior
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部