The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) a...The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.展开更多
Preparation of superfine magnesium hydroxide with the bittern and ammonia was studied. The properties of the products were analyzed by laser granularity, X-ray diffraction, scanning electron microscope, the limiting o...Preparation of superfine magnesium hydroxide with the bittern and ammonia was studied. The properties of the products were analyzed by laser granularity, X-ray diffraction, scanning electron microscope, the limiting oxygen index and the wetting angle measurements. The results show that the mean particle size of the magnesium hydroxide is about 230 nm with a platelet shape and the specific surface area is about 48 m2/g when the temperature is 55 ℃ , and the ammonia and bittern are instilled simultaneously during the reaction process. After the modification, the limiting oxygen index and physical chemistry performance of the magnesium hydroxide were examined. The results show that the contact angle of magnesium hydroxide is 132.5? and the limiting oxygen index is 31.5 %, indicating that the modified magnesium hydroxide is an effective flame retardant and can be applied as flame retardant additives of the macromolecule compounds such as plastic, synthetic rubber and synthetic fibre.展开更多
In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatm...In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO3 at 80 ℃followed by NH4OH titration for Mg(OH)2 precipitation was demonstrated. In this study, crystalline Mg(OH)2 nanopowders have been synthesized by solvothermal reaction method using (Mg(NO3)2·6H2O) which were obtained from serpentinite, NH4OH as a precipitator, and hydroxyethylated nonylphenol as surface-active substance. Microstructure and phase composition of samples were investigated employing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray phase analysis (XRD), and inductively coupled plasma optical emission spectroscopy (ICP-OES). XRD reveals that Mg(OH)2 nanopowder with high purity has the brucite structure. It was found that crystalline Mg(OH)2 nanopowders exclusively consist of lamellar-like structures and the sizes of Mg(OH)2 are 30-265 nm length or width.展开更多
Magnesium is generally known to degrade in aqueous environments by an electrochemical reaction.The corrosion products of magnesium include hydrogen gas,Mg^(2+),and Mg(OH)_(2).Here,we summarize the published literature...Magnesium is generally known to degrade in aqueous environments by an electrochemical reaction.The corrosion products of magnesium include hydrogen gas,Mg^(2+),and Mg(OH)_(2).Here,we summarize the published literature describing the corrosion characteristics of magnesium,and the antitumor properties of magnesium-associated corrosion products,aiming to induce the therapeutic properties of magnesium and magnesium alloys in solid tumors.The therapeutic potential of corrosion products of magnesium is enormous.Hydrogen gas exhibits antioxidant and anti-inflammatory properties,which amount to potential anti-tumor characteristics.Mg(OH)_(2),which creates a localized alkaline microenvironment,represents a second approach for anti-tumor therapy with magnesium metal.Upregulated concentrations of Mg^(2+)ions in the local tumor microenvironment remodelling are considered a third approach for anti-tumor therapy.Therefore,we speculate about the different physical forms of magnesium that could create an anti-tumor microenvironment upon tumor interventional therapy,a technique that precisely places anti-tumor implants like particles and stents.Finally,we present our viewpoints on the potential use of magnesium in diverse solid tumor therapies to inhibit tumor progression.展开更多
The lg c-pH diagram of the CaCl2-Ca(OH)2-H2O system and its two subsystems at 298.15 K are constructed according to the theory of thermodynamic equilibrium. The interaction characteristics between the solubility of ...The lg c-pH diagram of the CaCl2-Ca(OH)2-H2O system and its two subsystems at 298.15 K are constructed according to the theory of thermodynamic equilibrium. The interaction characteristics between the solubility of CaCl2 and Ca(OH)e can be found out from the diagrams. CaCl26H2O (s), Ca(OH)2(s) and solution coexist when the pH value of solution is about 10.8. CaC12 with the minimum solubility of 1 682.4 g/L is in equilibrium with solution when the pH value is lower than 9.4, and Ca(OH)2 with the minimum solubility of 2.749 g/L is in equilibrium with solution at the pH value over 12.1, which provides a theoretical basis for the treatment and reuse of calcium chloride mother liquor for collocating lime cream which is the precipitant in the process of synthesizing magnesium hydroxide.展开更多
A clean method for preparing layered double hydroxides (LDHs) has been developed, featured by using the hydroxides of two different metals as starting materials by atom-economic reactions. The reactions were carried...A clean method for preparing layered double hydroxides (LDHs) has been developed, featured by using the hydroxides of two different metals as starting materials by atom-economic reactions. The reactions were carried out under hydrothermal conditions in either a high pressure autoclave or a microwave digester. The compositions, structural parameters and thermal behavior of the resulting LDHs are very similar to those of materials produced by using the separate nucleation and aging steps (SNAS) method. The major advantage of the new method is that no by-product is produced, so that filtration and washing processes are unnecessary. The consequent reduction in water consumption is beneficial to the environment.展开更多
The inexpensive and green method of synthesis for self-assembled micro/nano structures is an important area of emerging research.Such structures can be chemically tuned with predesigned functional properties.Therefore...The inexpensive and green method of synthesis for self-assembled micro/nano structures is an important area of emerging research.Such structures can be chemically tuned with predesigned functional properties.Therefore,they hold very good promise for future applications,e.g.,biomedicine,electronic device,solar energy,gas sensing.Here we report for the first time an inexpensive and green method for chemical deposition of magnesium hydroxide(Mg(OH)_(2))micro/nano flowers in thin films on commercial soda lime silica glass substrates at room temperature.Under identical conditions,chemically synthesized Mg(OH)_(2) powders are also prepared in absence of the soda lime silica glass substrates.The condition that favors the growth of micro/nano flowers in thin films is identified from X-ray diffraction(XRD),scanning electron microscopy(SEM),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)data.Finally,the possible growth mechanism of micro/nano flowers in thin films is discussed.展开更多
基金financed by the FOMIX-Yucatán 2008-108160,CONACYT LAB-2009-01-123913,292692,294643,188345,and 204822 projectsthe financial support received from CONACYT。
文摘The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.
基金Project(2002-G-101) supported by the Key Program of Science and Technology of Qinghai Province, China
文摘Preparation of superfine magnesium hydroxide with the bittern and ammonia was studied. The properties of the products were analyzed by laser granularity, X-ray diffraction, scanning electron microscope, the limiting oxygen index and the wetting angle measurements. The results show that the mean particle size of the magnesium hydroxide is about 230 nm with a platelet shape and the specific surface area is about 48 m2/g when the temperature is 55 ℃ , and the ammonia and bittern are instilled simultaneously during the reaction process. After the modification, the limiting oxygen index and physical chemistry performance of the magnesium hydroxide were examined. The results show that the contact angle of magnesium hydroxide is 132.5? and the limiting oxygen index is 31.5 %, indicating that the modified magnesium hydroxide is an effective flame retardant and can be applied as flame retardant additives of the macromolecule compounds such as plastic, synthetic rubber and synthetic fibre.
基金the state on behalf of the Ministry of Education and Science of the Russian Federation of the Agreement (No. 14.577.21.0111 (22 September 2014))The unique identifier of the applied research (No. RFMEFI57714X0111)
文摘In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO3 at 80 ℃followed by NH4OH titration for Mg(OH)2 precipitation was demonstrated. In this study, crystalline Mg(OH)2 nanopowders have been synthesized by solvothermal reaction method using (Mg(NO3)2·6H2O) which were obtained from serpentinite, NH4OH as a precipitator, and hydroxyethylated nonylphenol as surface-active substance. Microstructure and phase composition of samples were investigated employing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray phase analysis (XRD), and inductively coupled plasma optical emission spectroscopy (ICP-OES). XRD reveals that Mg(OH)2 nanopowder with high purity has the brucite structure. It was found that crystalline Mg(OH)2 nanopowders exclusively consist of lamellar-like structures and the sizes of Mg(OH)2 are 30-265 nm length or width.
基金supported by the Open Funds for Shaanxi Provincial Key Laboratory of Infection and Immune Diseases(2022-KFZD-1)Natural Science Basic Research Program of Shaanxi(2021JM-080,2022JQ-832)the National Natural Science Foundation of China(82203047)
文摘Magnesium is generally known to degrade in aqueous environments by an electrochemical reaction.The corrosion products of magnesium include hydrogen gas,Mg^(2+),and Mg(OH)_(2).Here,we summarize the published literature describing the corrosion characteristics of magnesium,and the antitumor properties of magnesium-associated corrosion products,aiming to induce the therapeutic properties of magnesium and magnesium alloys in solid tumors.The therapeutic potential of corrosion products of magnesium is enormous.Hydrogen gas exhibits antioxidant and anti-inflammatory properties,which amount to potential anti-tumor characteristics.Mg(OH)_(2),which creates a localized alkaline microenvironment,represents a second approach for anti-tumor therapy with magnesium metal.Upregulated concentrations of Mg^(2+)ions in the local tumor microenvironment remodelling are considered a third approach for anti-tumor therapy.Therefore,we speculate about the different physical forms of magnesium that could create an anti-tumor microenvironment upon tumor interventional therapy,a technique that precisely places anti-tumor implants like particles and stents.Finally,we present our viewpoints on the potential use of magnesium in diverse solid tumor therapies to inhibit tumor progression.
基金Project(2008BAB35B04) supported by National High Technology Research and Development Program of ChinaProject(2010QZZD003) supported by Advanced Research Program of Central South University,China
文摘The lg c-pH diagram of the CaCl2-Ca(OH)2-H2O system and its two subsystems at 298.15 K are constructed according to the theory of thermodynamic equilibrium. The interaction characteristics between the solubility of CaCl2 and Ca(OH)e can be found out from the diagrams. CaCl26H2O (s), Ca(OH)2(s) and solution coexist when the pH value of solution is about 10.8. CaC12 with the minimum solubility of 1 682.4 g/L is in equilibrium with solution when the pH value is lower than 9.4, and Ca(OH)2 with the minimum solubility of 2.749 g/L is in equilibrium with solution at the pH value over 12.1, which provides a theoretical basis for the treatment and reuse of calcium chloride mother liquor for collocating lime cream which is the precipitant in the process of synthesizing magnesium hydroxide.
文摘A clean method for preparing layered double hydroxides (LDHs) has been developed, featured by using the hydroxides of two different metals as starting materials by atom-economic reactions. The reactions were carried out under hydrothermal conditions in either a high pressure autoclave or a microwave digester. The compositions, structural parameters and thermal behavior of the resulting LDHs are very similar to those of materials produced by using the separate nucleation and aging steps (SNAS) method. The major advantage of the new method is that no by-product is produced, so that filtration and washing processes are unnecessary. The consequent reduction in water consumption is beneficial to the environment.
文摘The inexpensive and green method of synthesis for self-assembled micro/nano structures is an important area of emerging research.Such structures can be chemically tuned with predesigned functional properties.Therefore,they hold very good promise for future applications,e.g.,biomedicine,electronic device,solar energy,gas sensing.Here we report for the first time an inexpensive and green method for chemical deposition of magnesium hydroxide(Mg(OH)_(2))micro/nano flowers in thin films on commercial soda lime silica glass substrates at room temperature.Under identical conditions,chemically synthesized Mg(OH)_(2) powders are also prepared in absence of the soda lime silica glass substrates.The condition that favors the growth of micro/nano flowers in thin films is identified from X-ray diffraction(XRD),scanning electron microscopy(SEM),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)data.Finally,the possible growth mechanism of micro/nano flowers in thin films is discussed.