Magnesium oxysulfate(MOS)whiskers are commonly synthesized through a dissolution-precipitation mechanism,wherein Mg(OH)_(2)dissolves to form Mg(OH)64−,followed by reactions with SO_(4)^(2−)and H_(2)O to yield MOS whis...Magnesium oxysulfate(MOS)whiskers are commonly synthesized through a dissolution-precipitation mechanism,wherein Mg(OH)_(2)dissolves to form Mg(OH)64−,followed by reactions with SO_(4)^(2−)and H_(2)O to yield MOS whiskers.However,the impact of Mg(OH)_(2)precursor properties on the formation process of MOS whiskers has been insufficiently explored,and sector-like and needle-like morphologies were both observed in previous studies.In this study,we systematically investigated how the properties of Mg(OH)_(2)precursors influenced the crystalline structure and morphology of MOS whiskers.Under various experimental conditions,MgSO_(4)·5Mg(OH)_(2)·2H_(2)O(152MOS)whiskers were consistently obtained,regardless of Mg(OH)_(2)morphology and size.The size of Mg(OH)_(2)emerged as a critical factor in shaping the morphology of 152MOS whiskers.Smaller-sized Mg(OH)_(2)(≤106±37 nm)favored the formation of sector-like whiskers,while larger-sized Mg(OH)_(2)(≥206±98 nm)encouraged the development of needle-like whiskers.This distinction was attributed to the slower dissolution rate exhibited by larger-sized Mg(OH)_(2),maintaining a smaller number of 152MOS nuclei and promoting the growth of needle-like whiskers instead of the aggregation of 152MOS nuclei into sector-like structures.In addition,the effects of the molar ratio of Mg^(2+)to SO_(4)^(2−)and hydrothermal temperature were also studied.The average length and diameter of the needle-like whiskers prepared with Mg(OH)_(2)of 331±145 nm under optimized conditions were 77±32 and 0.39±0.10μm,respectively.This study presented an effective strategy for controlling the morphology of 152MOS whiskers.展开更多
Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement...Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement were characterized using X-ray diffraction (XRD),thermogravimetric analysis (TG-DSC),Flourier transform infrared spectroscopy (FT-IR),mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM).It is found that both NaH_(2)PO_(4) and KH_(2)PO_(4) lead to an increase in the compressive strength and an improvement in the volume stability of MOS cement.The XRD,MIP and SEM results show that the addition of NaH_(2)PO_(4) or KH_(2)PO_(4) does not change the phase composition of MOS cement but promotes the formation of strength phase of 5Mg(OH)_(2)·MgSO_(4)·7H_(2)O (5·1·7 phase).This phase brings a considerable improvement in the microstructure of MOS cement,which has a positive effect on the properties of MOS cement.展开更多
Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less...Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.展开更多
The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth ...The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth is consistent with anion tetrahedralcoordination incorporation rules.The growth units of basic magnesium oxysulfate whiskers are [Mg-(OH)_4]^(2-) and HSO_4^-.[Mg-(OH)_4]^(2-) is the favorable growth unit and whisker growth is in the direction of the [Mg-(OH)_4]^(2-) combination.A plurality of [Mg-(OH)_4]^(2-) s combine and become a larger dimensionalgrowth unit in a one-dimensionaldirection.Then HSO_4^- and larger dimensionalgrowth units connect as basic magnesium sulfate whiskers,according to the structuralcharacteristics of the basic magnesium sulfate whisker,which can guide the synthesis of magnesium hydroxide whisker.展开更多
Superhydrophobic materials have attracted much attention for their special wettability.In this study.magnesium oxysulfate(MOS)whiskers were surface modified by vinyltrimethoxysilane(VTMS)and prepared as superhydrophob...Superhydrophobic materials have attracted much attention for their special wettability.In this study.magnesium oxysulfate(MOS)whiskers were surface modified by vinyltrimethoxysilane(VTMS)and prepared as superhydrophobic materials,which are expected to be widely used in self-cleaning,corro-sion prevention,and oil-water separation.The factors of silane concentration,hydrolysis time,reaction temperature,and reaction time were investigated.The superhydrophobic Mos whiskers were synthe-sized.SEM and XRD turned out that there were no apparent changes in the morphology and crystalli-zation behavior of whiskers before and after modification,while the surface was uniformly coated with a layer of non-crystal material,and the surface of the whiskers employed a chemical bond Si-O-Mg covalently connected.The thermogravimetric analysis ultimately demonstrated that surface modification was beneficial to the improvement of the thermal stability of MoS whiskers.Superhydrophobic MoS whiskers showed good compatibility with organic solvents through oil-water separation experiments,and demonstrated excellent self-cleaning performance.The methodology for the surface treatment of Mos whiskers to prepare superhydrophobic whiskers in this work may be extended for other whiskers or fillers,which may be promising for the preparation of superhydrophobic materials.展开更多
基金the National Natural Science Foundation of China(grant Nos.22178336,21991103)is gratefully acknowledged.
文摘Magnesium oxysulfate(MOS)whiskers are commonly synthesized through a dissolution-precipitation mechanism,wherein Mg(OH)_(2)dissolves to form Mg(OH)64−,followed by reactions with SO_(4)^(2−)and H_(2)O to yield MOS whiskers.However,the impact of Mg(OH)_(2)precursor properties on the formation process of MOS whiskers has been insufficiently explored,and sector-like and needle-like morphologies were both observed in previous studies.In this study,we systematically investigated how the properties of Mg(OH)_(2)precursors influenced the crystalline structure and morphology of MOS whiskers.Under various experimental conditions,MgSO_(4)·5Mg(OH)_(2)·2H_(2)O(152MOS)whiskers were consistently obtained,regardless of Mg(OH)_(2)morphology and size.The size of Mg(OH)_(2)emerged as a critical factor in shaping the morphology of 152MOS whiskers.Smaller-sized Mg(OH)_(2)(≤106±37 nm)favored the formation of sector-like whiskers,while larger-sized Mg(OH)_(2)(≥206±98 nm)encouraged the development of needle-like whiskers.This distinction was attributed to the slower dissolution rate exhibited by larger-sized Mg(OH)_(2),maintaining a smaller number of 152MOS nuclei and promoting the growth of needle-like whiskers instead of the aggregation of 152MOS nuclei into sector-like structures.In addition,the effects of the molar ratio of Mg^(2+)to SO_(4)^(2−)and hydrothermal temperature were also studied.The average length and diameter of the needle-like whiskers prepared with Mg(OH)_(2)of 331±145 nm under optimized conditions were 77±32 and 0.39±0.10μm,respectively.This study presented an effective strategy for controlling the morphology of 152MOS whiskers.
基金Supported by the Key Research and Development and Transformation Plan of Qinghai Province-Special Project for Transforming Scientific and Technological Achievements(No.2019-NN-159)。
文摘Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement were characterized using X-ray diffraction (XRD),thermogravimetric analysis (TG-DSC),Flourier transform infrared spectroscopy (FT-IR),mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM).It is found that both NaH_(2)PO_(4) and KH_(2)PO_(4) lead to an increase in the compressive strength and an improvement in the volume stability of MOS cement.The XRD,MIP and SEM results show that the addition of NaH_(2)PO_(4) or KH_(2)PO_(4) does not change the phase composition of MOS cement but promotes the formation of strength phase of 5Mg(OH)_(2)·MgSO_(4)·7H_(2)O (5·1·7 phase).This phase brings a considerable improvement in the microstructure of MOS cement,which has a positive effect on the properties of MOS cement.
基金supported by the National Natural Science Foundation(Grant No.51874329 and Grant No.52004297 and Grant No.51991361)the National Natural Science Innovation Population of China(Grant No.51821092)+1 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01)Cooperation projects of CCDC and CUPB(CQ2021B-33-Z2-3)。
文摘Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.
基金Funded by the National Natural Science Foundation of China(No.51272207)
文摘The growth habit of the basic magnesium oxysulfate whisker was investigated based on the theoreticalmodelof anion coordination polyhedron growth units.It is found that typicalbasic magnesium oxysulfate whisker growth is consistent with anion tetrahedralcoordination incorporation rules.The growth units of basic magnesium oxysulfate whiskers are [Mg-(OH)_4]^(2-) and HSO_4^-.[Mg-(OH)_4]^(2-) is the favorable growth unit and whisker growth is in the direction of the [Mg-(OH)_4]^(2-) combination.A plurality of [Mg-(OH)_4]^(2-) s combine and become a larger dimensionalgrowth unit in a one-dimensionaldirection.Then HSO_4^- and larger dimensionalgrowth units connect as basic magnesium sulfate whiskers,according to the structuralcharacteristics of the basic magnesium sulfate whisker,which can guide the synthesis of magnesium hydroxide whisker.
基金National Natural Science Foundation of China(grant No.21908012)and the Natural Science Foundation of Chongqing,China(grant Nos.cstc2020jcyj-msxmx0875 and CSTB2022BSXM-JSX0021)for the financial support to this work.
文摘Superhydrophobic materials have attracted much attention for their special wettability.In this study.magnesium oxysulfate(MOS)whiskers were surface modified by vinyltrimethoxysilane(VTMS)and prepared as superhydrophobic materials,which are expected to be widely used in self-cleaning,corro-sion prevention,and oil-water separation.The factors of silane concentration,hydrolysis time,reaction temperature,and reaction time were investigated.The superhydrophobic Mos whiskers were synthe-sized.SEM and XRD turned out that there were no apparent changes in the morphology and crystalli-zation behavior of whiskers before and after modification,while the surface was uniformly coated with a layer of non-crystal material,and the surface of the whiskers employed a chemical bond Si-O-Mg covalently connected.The thermogravimetric analysis ultimately demonstrated that surface modification was beneficial to the improvement of the thermal stability of MoS whiskers.Superhydrophobic MoS whiskers showed good compatibility with organic solvents through oil-water separation experiments,and demonstrated excellent self-cleaning performance.The methodology for the surface treatment of Mos whiskers to prepare superhydrophobic whiskers in this work may be extended for other whiskers or fillers,which may be promising for the preparation of superhydrophobic materials.