Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement...Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement were characterized using X-ray diffraction (XRD),thermogravimetric analysis (TG-DSC),Flourier transform infrared spectroscopy (FT-IR),mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM).It is found that both NaH_(2)PO_(4) and KH_(2)PO_(4) lead to an increase in the compressive strength and an improvement in the volume stability of MOS cement.The XRD,MIP and SEM results show that the addition of NaH_(2)PO_(4) or KH_(2)PO_(4) does not change the phase composition of MOS cement but promotes the formation of strength phase of 5Mg(OH)_(2)·MgSO_(4)·7H_(2)O (5·1·7 phase).This phase brings a considerable improvement in the microstructure of MOS cement,which has a positive effect on the properties of MOS cement.展开更多
Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less...Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.展开更多
基金Supported by the Key Research and Development and Transformation Plan of Qinghai Province-Special Project for Transforming Scientific and Technological Achievements(No.2019-NN-159)。
文摘Sodium dihydrogen phosphate (NaH_(2)PO_(4)) and potassium dihydrogen phosphate (KH_(2)PO_(4)) were selected as additives for magnesium oxysulfate (MOS) cement.The phase composition and the microstructure of MOS cement were characterized using X-ray diffraction (XRD),thermogravimetric analysis (TG-DSC),Flourier transform infrared spectroscopy (FT-IR),mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM).It is found that both NaH_(2)PO_(4) and KH_(2)PO_(4) lead to an increase in the compressive strength and an improvement in the volume stability of MOS cement.The XRD,MIP and SEM results show that the addition of NaH_(2)PO_(4) or KH_(2)PO_(4) does not change the phase composition of MOS cement but promotes the formation of strength phase of 5Mg(OH)_(2)·MgSO_(4)·7H_(2)O (5·1·7 phase).This phase brings a considerable improvement in the microstructure of MOS cement,which has a positive effect on the properties of MOS cement.
基金supported by the National Natural Science Foundation(Grant No.51874329 and Grant No.52004297 and Grant No.51991361)the National Natural Science Innovation Population of China(Grant No.51821092)+1 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01)Cooperation projects of CCDC and CUPB(CQ2021B-33-Z2-3)。
文摘Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.