The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepare...The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepared with calcined dolomite,ferrosilicon and fluorite were determined at the heating rates of 1.5,2.0,2.5 and 3.0℃/min in 5 Pa vacuum at 300−1400℃,respectively.Model-free analysis and model-based analysis were applied for simulating the kinetic mechanism.By analyzing the characteristics of the initial and final reaction temperatures of TG curve,ratio of half-width of derivative TG curve and kinetic parameters,a conclusion was made that the most probable mechanism function is the first order formal chemical reaction with activation energy of 233.42 kJ/mol and pre-exponential factor of 5.14×1010 s−1.This study provides the basic data of dynamics of silicothermic magnesium production under vacuum conditions.展开更多
With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing m...With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.展开更多
基金Project(2016YFB0301100)supported by the National Key R&D Program of ChinaProject(51804277)supported by the National Natural Science Foundation of ChinaProject(2018ZE007)supported by the Rare and Precious Metal Materials Genome Engineering Project of Yunnan Province,China。
文摘The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepared with calcined dolomite,ferrosilicon and fluorite were determined at the heating rates of 1.5,2.0,2.5 and 3.0℃/min in 5 Pa vacuum at 300−1400℃,respectively.Model-free analysis and model-based analysis were applied for simulating the kinetic mechanism.By analyzing the characteristics of the initial and final reaction temperatures of TG curve,ratio of half-width of derivative TG curve and kinetic parameters,a conclusion was made that the most probable mechanism function is the first order formal chemical reaction with activation energy of 233.42 kJ/mol and pre-exponential factor of 5.14×1010 s−1.This study provides the basic data of dynamics of silicothermic magnesium production under vacuum conditions.
基金the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project Foundation of China(No.YNWR-CYJS-2018-015)Basic Research Project of Yunnan Province(No.2019FB080).
文摘With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.