Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that...The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that any component does not have, such as high specific stiffness and specific strength, good dimensional stability, outstanding shock absorption performance, excellent electromagnetic shielding and hydrogen storage characteristics, etc. As an emerging manufacturing technology, additive manufacturing(AM) is based on the design of threedimensional(3D) data model to obtain 3D objects through layer-by-layer processing, which possesses the advantages of short manufacturing cycle, high material utilization rate, high degree of design freedom, excellent mechanical properties and the ability to fabricate complex structural components. Combining the high stiffness and high strength properties of MMCs and the technical advantages of AM forming complex structural parts with high performance, the prepared AM MMCs have huge potential advantages and broad application prospects in new high-tech industries such as automobile, aerospace, consumer electronics and biomedicine, etc. This paper reviews the research progress in the field of AM MMCs, mainly introduces the main AM technologies, including selective laser melting(SLM), electron beam selective melting(EBSM), laser engineered net shaping(LENS) and wire and arc additive manufacturing(WAAM). The formation mechanism and control methods of the typical defects including balling effect, porosity, poor fusion, loss of alloy elements and cracks produced during AM are discussed. The main challenges of AM MMCs are proposed from the aspects of composition design and the preparation of powder raw material. The relationship between the microstructure and mechanical properties, corrosion performance and biocompatibility of AM MMCs are elaborated in detail. The application potential of AM MMCs in various fields at present and in the future is introduced. Finally, the development direction and urgent problems to be solved in the AM MMCs are prospected.展开更多
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat...Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under di...By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.展开更多
3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled an...3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.展开更多
SiC particles were added to the Mg97Zn1Y2 alloy to improve its mechanical properties and damping properties.The microstructure,mechanical properties,and strain amplitude dependence of high-damping and high-strength Si...SiC particles were added to the Mg97Zn1Y2 alloy to improve its mechanical properties and damping properties.The microstructure,mechanical properties,and strain amplitude dependence of high-damping and high-strength SiC/Mg97Zn1Y2 magnesium matrix composites were analyzed.The strain amplitude-dependent damping of SiC/Mg97Zn1Y2 composites and the effect of SiC on this property were discussed herein.In anelastic damping,the strain amplitude-dependent damping curves of the composites were mainly divided into two sections,dominated by the G-L model.When the strain amplitude reaches a certain value,the dislocation motion inside the matrix becomes complicated.Moreover,the damping of the material could not be explained using the G-L model,and a new damping model related to microplastic deformation was proposed.In the anelastic damping stage,with the increase in the amount of the added SiC particles,the damping performance first increases and then decreases.Moreover,the damping value of the composite material is larger than that of the matrix alloy.In the microplastic deformation stage,the damping properties of the composites and matrix alloys considerably increase with the strain amplitude.展开更多
Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used rei...Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.展开更多
The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and t...The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and the Chinese script type reinforced Mg2Si phases exist in liquid phase and grain boundary.The analysis of apparent viscosity indicates that the apparent viscosity of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state increases with increasing the volume fraction of Mg2Si and solid fraction of primary α-Mg,but decreases with increasing the shearing rate and shearing time,and the apparent viscosity keeps stable when shearing time reaches 300 s.展开更多
The bimodal size SiC particulates(SiCp)reinforced magnesium matrix composites with different ratios of micron SiCp and nano SiCp(M-SiCp:N-SiCp=14.5:0.5,14:1,and 13.5:1.5)were prepared by semisolid stirring assisted ul...The bimodal size SiC particulates(SiCp)reinforced magnesium matrix composites with different ratios of micron SiCp and nano SiCp(M-SiCp:N-SiCp=14.5:0.5,14:1,and 13.5:1.5)were prepared by semisolid stirring assisted ultrasonic vibration method.The AZ31B alloy and all as-cast SiCp/AZ31B composites were extruded at 350℃ with the ratio of 12:1.Microstructural characterization of the extruded M14+N1(M-SiCp:N-SiCp=14:1)composite revealed the uniform distribution of bimodal size SiCp and significant grain refinement.Optical Microscopy(OM)observation showed that,compared with the M14.5+N0.5(M-SiCp:N-SiCp=14.5:0.5)composite,there are more recrystallized grains in M14+N1(M-SiCp:N-SiCp=14:1)and M13.5+N1.5(M-SiCp:N-SiCp=13.5:1.5)composites,but in comparison to the M13.5+N1.5 composite,the average grain size of the M14+N1 composite is slightly decreased.The evaluation of mechanical properties indicated that the yield strength and ultimate tensile strength of the M14+N1 composite were obviously increased compared with other composites.展开更多
A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature cr...A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.展开更多
SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement...SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.展开更多
Inspired by an old fish skin structure,the Cf/Ti/Mg laminated composites were fabricated by squeeze casting technology.No porous or voids were found in final composite,and carbon fiber was uniformly dispersed in Mg ma...Inspired by an old fish skin structure,the Cf/Ti/Mg laminated composites were fabricated by squeeze casting technology.No porous or voids were found in final composite,and carbon fiber was uniformly dispersed in Mg matrix.Furthermore,the addition of net-shaped Ti adsorbed Al element and facilitated the nucleation of Mg_(17)Al_(12)nearby Ti.The reaction product Al_(4)C_(3)was found at the Cf and AZ91 interface.Mechanical tests indicate that the introduction of Ti could greatly improve the toughness of Cf/Mg composites.展开更多
Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two diff...Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two different processing methods namely conventional stir casting and friction stir processing(FSP).The microstructural features were observed using optical microscope,scanning electron microscope and electron backscatter diffraction.The sliding wear behavior was tested using a pin-on-disc wear apparatus.The stir cast composite showed inhomogeneous particle dispersion and coarse grain structure.Some of the FA particles decomposed and reacted with the matrix alloy to produce undesirable compounds.Conversely,FSP composite showed superior particle dispersion and fine,equiaxed grains by dynamic recrystallization.FA particles encountered disintegration but there was no interfacial reaction.FSP composite demonstrated higher strengthening and wear resistance to that of stir cast composite.The morphology of the worn surface and the wear debris were studied in detail.展开更多
The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and...The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and TiBw/Ti composite layer together constructed a laminated structure at a macro scale. Furthermore, TiBw reinforcement was distributed around Ti particles and then formed a network microstructure in TiBw/Ti composite layer at a micro scale. The laminated Ti-TiBw/Ti composites reveal a superior combination of high strength and high elongation due to two-scale structures compared with the pure Ti, and a further enhancement in ductility compared with the network structured composites. Moreover, the elastic modulus of the laminated composites can be predicted by H-S upper bound, which is consistent with the experimental values.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix ...The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix composites achieved simultaneous improvement in strength,elongation and wear resistance.The Ti particles reinforced AZ31 composites were fabricated by ultrasonic-assisted stir casting with hot extrusion.The results showed that a strong interfacial bonding was obtained at Ti/Mg interface because of the formation of semicoherent orientation relationship of Ti Al/Mg,Ti Al/Al_(2)Ti and Al_(2)Ti/Mg interfaces.The as-extruded 6 wt.%Ti/AZ31 composite presented the best compressive mechanical properties and wear resistance with ultimate tensile strength,elongation and wear rate of 327 MPa,20.4%and 9.026×10^(-3)mm^(3)/m,obviously higher than those of AZ31 alloys.The enhanced mechanical properties were attributed to the grain refinement and strong interfacial bonding.The improved wear resistance was closely related to the increased hardness of composites and the formation of protective oxidation films.展开更多
The mechanical properties of magnesium matrix composties can be further improved by aging treatment. To study the aging behavior of SiC particles reinforced AZ61 magnesium matrix composites fabricated by ultrasonic me...The mechanical properties of magnesium matrix composties can be further improved by aging treatment. To study the aging behavior of SiC particles reinforced AZ61 magnesium matrix composites fabricated by ultrasonic method, an investigation has been undertaken by means of Vickers hardness measurement, scanning electron microscopy (SEM) and energy spectrum analyzing apparatus. The box-type heat treatment furnace was used in the study. The results showed that no discontinuous cellular precipitation is observed at the grain boundaries in the magnesium matrix of the composite while the MglTAI12 preferentially precipitates in the matrix. The time to reach the peak hardness for AZ61 alloy or SiCp/AZ61 magnesium matrix composites is reduced with the increase of aging temperature. At the same temperature, the composite exhibit an accelerated aging manner but lower aging efficiency, compared with the unreinforced matrix alloy. The microhardness of the composite is higher than that of the unreinforced matrix alloy, because that the SiC particles distributes homogeneously in the matrix alloy under the ultrasonic processing condition.展开更多
Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites ...Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect,which can severely reduce the yield of composite products.To improve current understanding on the mechanism of transverse welding phenomenon,a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed.The formation of transverse weld during extrusion was visualized using finite element simulation method,and the formation mechanism was discussed from the aspect of velocity field using a point tracking technique.The simulation results were verified by the experimental results in term of weld shape.展开更多
The effect of antimony addition on the microstructure of Mg-Al-Si magnesium matrix composite was investi- gated.The addition of Sb can modify the morphology of Mg-2Si particles which have Chinese script shape to fine ...The effect of antimony addition on the microstructure of Mg-Al-Si magnesium matrix composite was investi- gated.The addition of Sb can modify the morphology of Mg-2Si particles which have Chinese script shape to fine polygonal one.Magnesium matrix composite with Alborex whisker was successfully fabricated by using a squeeze infiltration method.Tensile strength and elongation were increased in the Sb modified alloy and the composite at both room and high temperatures.展开更多
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金financially supported by the Defense Industrial Technology Development Program (no.JCKY2021601B203)Ningbo Yongjiang Talent Project (no.YJ0222012)Ningbo Beilun District “Strong Port and Strong District Talent Introduction” Project (no.QG0222002)。
文摘The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that any component does not have, such as high specific stiffness and specific strength, good dimensional stability, outstanding shock absorption performance, excellent electromagnetic shielding and hydrogen storage characteristics, etc. As an emerging manufacturing technology, additive manufacturing(AM) is based on the design of threedimensional(3D) data model to obtain 3D objects through layer-by-layer processing, which possesses the advantages of short manufacturing cycle, high material utilization rate, high degree of design freedom, excellent mechanical properties and the ability to fabricate complex structural components. Combining the high stiffness and high strength properties of MMCs and the technical advantages of AM forming complex structural parts with high performance, the prepared AM MMCs have huge potential advantages and broad application prospects in new high-tech industries such as automobile, aerospace, consumer electronics and biomedicine, etc. This paper reviews the research progress in the field of AM MMCs, mainly introduces the main AM technologies, including selective laser melting(SLM), electron beam selective melting(EBSM), laser engineered net shaping(LENS) and wire and arc additive manufacturing(WAAM). The formation mechanism and control methods of the typical defects including balling effect, porosity, poor fusion, loss of alloy elements and cracks produced during AM are discussed. The main challenges of AM MMCs are proposed from the aspects of composition design and the preparation of powder raw material. The relationship between the microstructure and mechanical properties, corrosion performance and biocompatibility of AM MMCs are elaborated in detail. The application potential of AM MMCs in various fields at present and in the future is introduced. Finally, the development direction and urgent problems to be solved in the AM MMCs are prospected.
基金Funded by the Guangdong Province Major Science and Technology Program (No.2008A090300002)
文摘Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
基金Project(10151170003000002)supported by the National Science Foundation of Guangdong Province,China
文摘By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.
基金financial supports from the Natural Science Foundation of Shandong Province(ZR2021ME241)the Natural Science Foundation of Liaoning Province(No.2020-MS-004)+2 种基金the National Natural Science Foundation of China(NSFC,Nos.51601193 and 51701218)State Key Program of National Natural Science of China(No.51531002)National Key Research and Development Program of China(No.2016YFB0301104).
文摘3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.
基金Funded by the National Natural Science Foundation of China(No.51665012)。
文摘SiC particles were added to the Mg97Zn1Y2 alloy to improve its mechanical properties and damping properties.The microstructure,mechanical properties,and strain amplitude dependence of high-damping and high-strength SiC/Mg97Zn1Y2 magnesium matrix composites were analyzed.The strain amplitude-dependent damping of SiC/Mg97Zn1Y2 composites and the effect of SiC on this property were discussed herein.In anelastic damping,the strain amplitude-dependent damping curves of the composites were mainly divided into two sections,dominated by the G-L model.When the strain amplitude reaches a certain value,the dislocation motion inside the matrix becomes complicated.Moreover,the damping of the material could not be explained using the G-L model,and a new damping model related to microplastic deformation was proposed.In the anelastic damping stage,with the increase in the amount of the added SiC particles,the damping performance first increases and then decreases.Moreover,the damping value of the composite material is larger than that of the matrix alloy.In the microplastic deformation stage,the damping properties of the composites and matrix alloys considerably increase with the strain amplitude.
基金National Natural Science Foundation of China (52101123, 52171103)Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006) for the support。
文摘Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.
基金Project(50765005) supported by the National Natural Science Foundation of Chinasupported by Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University),China
文摘The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and the Chinese script type reinforced Mg2Si phases exist in liquid phase and grain boundary.The analysis of apparent viscosity indicates that the apparent viscosity of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state increases with increasing the volume fraction of Mg2Si and solid fraction of primary α-Mg,but decreases with increasing the shearing rate and shearing time,and the apparent viscosity keeps stable when shearing time reaches 300 s.
文摘The bimodal size SiC particulates(SiCp)reinforced magnesium matrix composites with different ratios of micron SiCp and nano SiCp(M-SiCp:N-SiCp=14.5:0.5,14:1,and 13.5:1.5)were prepared by semisolid stirring assisted ultrasonic vibration method.The AZ31B alloy and all as-cast SiCp/AZ31B composites were extruded at 350℃ with the ratio of 12:1.Microstructural characterization of the extruded M14+N1(M-SiCp:N-SiCp=14:1)composite revealed the uniform distribution of bimodal size SiCp and significant grain refinement.Optical Microscopy(OM)observation showed that,compared with the M14.5+N0.5(M-SiCp:N-SiCp=14.5:0.5)composite,there are more recrystallized grains in M14+N1(M-SiCp:N-SiCp=14:1)and M13.5+N1.5(M-SiCp:N-SiCp=13.5:1.5)composites,but in comparison to the M13.5+N1.5 composite,the average grain size of the M14+N1 composite is slightly decreased.The evaluation of mechanical properties indicated that the yield strength and ultimate tensile strength of the M14+N1 composite were obviously increased compared with other composites.
基金Project(50972121) supported by the National Natural Science Foundation of China
文摘A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.
基金Project(2007CB613706) supported by the National Basic Research Program of ChinaProject(00900054R4001) supported by Innovation Project for Talents of BJUTProject(00900054K4004) supported by the Science Foundation for Youths of BJUT
文摘SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.
基金supported from National Key Research and Development Program of China(No.2017YFB0703102)Na-tional Natural Science Foundation of China(Nos.51671066 and 51471059)the Key Laboratory of Superlight Mate-rials&Surface Technology(Harbin Engineering University),Ministry of Education.
文摘Inspired by an old fish skin structure,the Cf/Ti/Mg laminated composites were fabricated by squeeze casting technology.No porous or voids were found in final composite,and carbon fiber was uniformly dispersed in Mg matrix.Furthermore,the addition of net-shaped Ti adsorbed Al element and facilitated the nucleation of Mg_(17)Al_(12)nearby Ti.The reaction product Al_(4)C_(3)was found at the Cf and AZ91 interface.Mechanical tests indicate that the introduction of Ti could greatly improve the toughness of Cf/Mg composites.
文摘Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two different processing methods namely conventional stir casting and friction stir processing(FSP).The microstructural features were observed using optical microscope,scanning electron microscope and electron backscatter diffraction.The sliding wear behavior was tested using a pin-on-disc wear apparatus.The stir cast composite showed inhomogeneous particle dispersion and coarse grain structure.Some of the FA particles decomposed and reacted with the matrix alloy to produce undesirable compounds.Conversely,FSP composite showed superior particle dispersion and fine,equiaxed grains by dynamic recrystallization.FA particles encountered disintegration but there was no interfacial reaction.FSP composite demonstrated higher strengthening and wear resistance to that of stir cast composite.The morphology of the worn surface and the wear debris were studied in detail.
基金Funded by the National Natural Science Foundation of China(Nos.51101042,51271064 and 51228102)
文摘The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and TiBw/Ti composite layer together constructed a laminated structure at a macro scale. Furthermore, TiBw reinforcement was distributed around Ti particles and then formed a network microstructure in TiBw/Ti composite layer at a micro scale. The laminated Ti-TiBw/Ti composites reveal a superior combination of high strength and high elongation due to two-scale structures compared with the pure Ti, and a further enhancement in ductility compared with the network structured composites. Moreover, the elastic modulus of the laminated composites can be predicted by H-S upper bound, which is consistent with the experimental values.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
基金the financial supports from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the National Natural Science Foundation of China(Nos.52171103,52171133)+3 种基金the Natural Science Foundation of Chongqing(cstc2019jcyjmsxm X0234)the“111 Project”(B16007)by the Ministry of Educationthe Fundamental Research Funds for the Central Universities(No.2020CDJDPT001)Graduate Research and Innovation Foundation of Chongqing,China(No.CYB21001)。
文摘The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix composites achieved simultaneous improvement in strength,elongation and wear resistance.The Ti particles reinforced AZ31 composites were fabricated by ultrasonic-assisted stir casting with hot extrusion.The results showed that a strong interfacial bonding was obtained at Ti/Mg interface because of the formation of semicoherent orientation relationship of Ti Al/Mg,Ti Al/Al_(2)Ti and Al_(2)Ti/Mg interfaces.The as-extruded 6 wt.%Ti/AZ31 composite presented the best compressive mechanical properties and wear resistance with ultimate tensile strength,elongation and wear rate of 327 MPa,20.4%and 9.026×10^(-3)mm^(3)/m,obviously higher than those of AZ31 alloys.The enhanced mechanical properties were attributed to the grain refinement and strong interfacial bonding.The improved wear resistance was closely related to the increased hardness of composites and the formation of protective oxidation films.
基金financially supported by the National Natural Science Foundation of China(Grant No.50765005)supported by the Innovative Group of Science and Technology of Colleges,Jiangxi Province,China(00008713)
文摘The mechanical properties of magnesium matrix composties can be further improved by aging treatment. To study the aging behavior of SiC particles reinforced AZ61 magnesium matrix composites fabricated by ultrasonic method, an investigation has been undertaken by means of Vickers hardness measurement, scanning electron microscopy (SEM) and energy spectrum analyzing apparatus. The box-type heat treatment furnace was used in the study. The results showed that no discontinuous cellular precipitation is observed at the grain boundaries in the magnesium matrix of the composite while the MglTAI12 preferentially precipitates in the matrix. The time to reach the peak hardness for AZ61 alloy or SiCp/AZ61 magnesium matrix composites is reduced with the increase of aging temperature. At the same temperature, the composite exhibit an accelerated aging manner but lower aging efficiency, compared with the unreinforced matrix alloy. The microhardness of the composite is higher than that of the unreinforced matrix alloy, because that the SiC particles distributes homogeneously in the matrix alloy under the ultrasonic processing condition.
基金The authors would like to gratefully acknowledge the financial support of National Natural Science Foundation of China(Grant No.51305345)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2014JQ6228).
文摘Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect,which can severely reduce the yield of composite products.To improve current understanding on the mechanism of transverse welding phenomenon,a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed.The formation of transverse weld during extrusion was visualized using finite element simulation method,and the formation mechanism was discussed from the aspect of velocity field using a point tracking technique.The simulation results were verified by the experimental results in term of weld shape.
基金Acknowledgement This work was supported by the 2005 National Research Laborat.ory Prograin and a grant-in-aid tbr the National Core Research Cent.er Program (No. R 15-2006-02202001-0) form the Korean Ministry of Science & Technology and the Korea. Science & Engineering Foundation.
文摘The effect of antimony addition on the microstructure of Mg-Al-Si magnesium matrix composite was investi- gated.The addition of Sb can modify the morphology of Mg-2Si particles which have Chinese script shape to fine polygonal one.Magnesium matrix composite with Alborex whisker was successfully fabricated by using a squeeze infiltration method.Tensile strength and elongation were increased in the Sb modified alloy and the composite at both room and high temperatures.