期刊文献+
共找到133,795篇文章
< 1 2 250 >
每页显示 20 50 100
Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries:Review on the alloying phase and reaction mechanisms
1
作者 Dedy Setiawan Hyeonjun Lee +6 位作者 Jangwook Pyun Amey Nimkar Netanel Shpigel Daniel Sharon Seung-Tae Hong Doron Aurbach Munseok S.Chae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3476-3490,共15页
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro... Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems. 展开更多
关键词 magnesium-ion battery Anode materials Magnesium alloy Electrochemical alloying
下载PDF
Comprehensive insights into recent innovations:Magnesium-inclusive high-entropy alloys
2
作者 Andrii Babenko Ehsan Ghasali +6 位作者 Saleem Raza Kahila Baghchesaraee Ye Cheng Asif Hayat Peng Liu Shuaifei Zhao Yasin Orooji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1311-1345,共35页
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we... This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure. 展开更多
关键词 MAGNESIUM High-entropy alloys CLASSIFICATION Thermodynamic parameters Physical parameters
下载PDF
Synergy of inside doped metals–Outside coated graphene to enhance hydrogen storage in magnesium-based alloys
3
作者 Kun Zhang Yu Chang +7 位作者 Jingjing Lei Jing Chen Tingzhi Si Xiaoli Ding Ping Cui Hai-Wen Li Qingan Zhang Yongtao Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2462-2471,共10页
Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method ... Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method involving synergistic effect of inside embedded metals and outside coated graphene to limit the growth of Mg and its hydride grains.The graphene coated Mg-Y-Al alloys were selected as a model system for demonstrating this positive effect where the Mg_(91)Y_(3)Al_(6)alloy was first prepared by rapidly solidified method and then high-pressure milled with 5 wt%graphene upon 5 MPa hydrogen gas for obtaining in-situ formed YAl_(2)and YH_(3)embedded in the MgH_(2)matrix with graphene shell(denoted as MgH_(2)-Y-Al@GR).In comparison to pure MgH_(2),the obtained MgH_(2)-Y-Al@GR composites deliver much better kinetics and more stable cyclic performance.For instance,the MgH_(2)-Y-Al@GR can release about 6.1 wt%H_(2)within 30 min at 300℃ but pure MgH_(2)only desorbs∼1.5 wt%H_(2).The activation energy for desorption of MgH_(2)-Y-Al@GR samples is calculated to be 75.3±9.1 kJ/mol that is much lower than approximately 160 kJ/mol for pure MgH_(2).Moreover,its capacity retention is promoted from∼57%of pure MgH_(2)to∼84%after 50th cycles without obvious particle agglomeration and grain growth.The synergistic effect of outside graphene coating with inside embedded metals which could provide a huge number of active sites for catalysis as well as inhibit the grain growth of Mg and its hydride is believed to be responsible for these. 展开更多
关键词 Energy Hydrogen storage Mg alloys Synergy effect
下载PDF
A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications
4
作者 Fatemeh Zahra Akbarzadeh Masoud Sarraf +4 位作者 Erfan Rezvani Ghomi Vishnu Vijay Kumar Mojtaba Salehi Seeram Ramakrishna Sungchul Bae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2569-2594,共26页
Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedi... Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future. 展开更多
关键词 Mg-based alloys BIOCOMPATIBILITY Anti-microbial strategies Additive manufacturing Mg implants
下载PDF
The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys:In vitro and in vivo studies
5
作者 Lei Shi Yang Yan +3 位作者 Chun-sheng Shao Kun Yu Bo Zhang Liang-jian Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期608-624,共17页
The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human ... The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human bone.The aim of our study is to develop a magnesium alloy with a controllable degradation that can closely match bone tissue to help injuries heal in vivo and avoid cytotoxicity caused by a sudden increase in ion concentration.In this study,we prepared and modified Mg-3Zn,Mg-3Zn-1Y,and Mg-2Zn-1Mn by hot extrusion,and used Mg-2.5Y-2.5Nd was as a control.We then investigated the effect of additions of Y and Mn on alloys'properties.Our results show that Mn and Y can improve not only compression strength but also corrosion resistance.The alloy Mg-2Zn-1Mn demonstrated good cytocompatibility in vitro,and for this reason we selected it for implantation in vivo.The degraded Mg-2Zn-1Mn implanted a bone defect area did not cause obvious rejection and inflammatory reaction,and the degradation products left no signs of damage to the heart,liver,kidney,or brain.Furthermore,we find that Mg-2Zn-1Mn can promote an osteoinductive response in vivo and the formation of bone regeneration. 展开更多
关键词 Magnesium alloy BIODEGRADATION BIOCOMPATIBILITY Bone regeneration Bone defect repair
下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system
6
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
7
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
8
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
9
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61 MAGNESIUM-BASED ALLOY 被引量:9
10
作者 H.Y. Wang Z.J. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第4期287-294,共8页
Laser welling process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welling speed, and protection gas flow at the to... Laser welling process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welling speed, and protection gas flow at the top and bottom is researched. The results show that an ideal well bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welling speed are the two main parameters that determine the well width and dimensions. The protect gas flow rate has a slight effect on the well width, but it directly effects the surface color of the well. The test results for typical welds indicate that the microhardness and tensile strength of the well zone are better than that of the base metal A fine-grained well region has been observed and no obvious heat-affected zone is found. The well zone mainly consists of small α-Mg phase, (α + Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of wells for AZ61 magnesium alloys. 展开更多
关键词 magnesium alloy laser beam welding laser power welling speed
下载PDF
Determination of thermal conductivity of magnesium-alloys 被引量:9
11
作者 ZHOU Jie min 1,YANG Ying 1,Magne Lamvik 2,WANG Gang 1 (1.Department of Applied Physics and Heat Engineering, Central South University, Changsha 410083, China 2.Norwegian University of Science and Technology) 《Journal of Central South University of Technology》 2001年第1期60-63,共4页
An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which t... An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0 450 ℃ is about 95%. The method is applicable in the given temperature range. 展开更多
关键词 angstroms method thermal conductivity thermal diffusivity magnesium alloy
下载PDF
Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery 被引量:5
12
作者 Fanglei Tong Xize Chen +3 位作者 Shanghai Wei Jenny Malmstr^m Joseph Vella Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1967-1976,共10页
Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electr... Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electrochemical measurements and Mg-air battery tests.The results show that addition of Sn stimulates the electrochemical activity and significantly improves the anodic efficiency and specific capacity of Mg-Zn alloy anodes.Among the four alloy anodes,Mg-2Zn-3Sn(ZT23)shows the best battery discharge performance at low current densities(≤5 m A cm^(-2)),achieving high energy density of 1367 m Wh g^(-1)at 2 mA cm^(-2).After battery discharging,the surface morphology and electrochemical measurement results illustrate that a ZnO and SnO/SnO_(2)mixed film on alloy anode surface decreases self-corrosion and improves anodic efficiency during discharging.The excessive intermetallic phases lead to the failure of passivation films,acting as micro-cathodes to accelerate self-corrosion. 展开更多
关键词 Magnesium alloys alloy anode Self-corrosion magnesium-air battery Discharge performance
下载PDF
Laser welding of AZ61 magnesium-based alloys Laser welding of AZ61 magnesium-based alloys 被引量:3
13
作者 王红英 李志军 张亦慧 《China Welding》 EI CAS 2006年第3期29-33,共5页
Laser welding of AZ61 magnesium alloys was carried out using a CO2 laser welding experimental system. The welding properties of AZ61 sheets with different thickness were investigated. The effect of processing paramete... Laser welding of AZ61 magnesium alloys was carried out using a CO2 laser welding experimental system. The welding properties of AZ61 sheets with different thickness were investigated. The effect of processing parameters including laser power, welding speed and protection gas flow was researched. The results show that laser power and welding speed have large effect on the weld width and joint dimensions. Protection gas flow has relatively slight effect on the weld width. The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal, Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method. The microstructure with small grains in weld zone is believed to be respoasible for the excellent mechanical properties of AZ61 joints. 展开更多
关键词 magnesium alloys laser welding weld properties process parameters
下载PDF
Influence of Al Content on the Atmospheric Corrosion Behaviour of Magnesium-Aluminum Alloys 被引量:1
14
作者 Ruiling Jia Chuanwei Yan Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期225-229,共5页
The influence of AI content on the Mg-AI alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-AI alloys was accelerated w... The influence of AI content on the Mg-AI alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-AI alloys was accelerated with increasing AI content. The poor corrosion resistance was attributed to the galvanic coupling between the phase and eutectic phase or α phase and the formation of porous corrosion products. 展开更多
关键词 Magnesium alloys Al content Atmospheric corrosion
下载PDF
Effect of graphene nanoplatelets(GNPs)addition on strength and ductility of magnesium-titanium alloys 被引量:10
15
作者 Muhammad Rashad Fusheng Pan +6 位作者 Aitao Tang Yun Lu Muhammad Asif Shahid Hussain Jia She Jun Gou Jianjun Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期242-248,共7页
Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder ... Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder metallurgy method followed by hot extrusion.Microstructural characterization results revealed the uniform distribution of reinforcement(Ti+GNPs)particles in the matrix,therefore(Ti+GNPs)particles act as an effective reinforcing filler to prevent the deformation.Room temperature tensile results showed that the addition of Ti+GNPs to monolithic Mg lead to increase in 0.2%yield strength(0.2%YS),ultimate tensile strength(UTS),and failure strain.Scanning Electron Microscopy(SEM),Energy-Dispersive X-ray Spectroscopy(EDS)and X-Ray Diffraction(XRD)were used to investigate the surface morphology,elemental dispersion and phase analysis,respectively. 展开更多
关键词 MAGNESIUM Titanium Graphene nanoplatelets alloy Composite materials Powder metallurgy Mechanical properties
下载PDF
Magnesium alloys as anodes for neutral aqueous magnesium-air batteries 被引量:4
16
作者 Fanglei Tong Shanghai Wei +1 位作者 Xize Chen Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1861-1883,共23页
Magnesium(Mg)is abundant,green and low-cost element.Magnesium-air(Mg-air)battery has been used as disposable lighting power supply,emergency and reserve batteries.It is also one of the potential electrical energy stor... Magnesium(Mg)is abundant,green and low-cost element.Magnesium-air(Mg-air)battery has been used as disposable lighting power supply,emergency and reserve batteries.It is also one of the potential electrical energy storage devices for future electric vehicles(EVs)and portable electronic devices,because of its high theoretical energy density(6.8 k Wh·kg^(-1))and environmental-friendliness.However,the practical application of Mg-air batteries is limited due to the low anodic efficiency of Mg metal anode and sluggish oxygen reduction reaction of air cathode.Mg metal as an anode material is facing two main challenges:high self-corrosion rate and formation of a passivation layer Mg(OH)_(2)which reduces the active surface area.In last decades,a number of Mg alloys,including Mg-Ca,Mg-Zn,commercial Mg-Al-Zn,Mg-Al-Mn,and Mg-Al-Pb alloys,have been studied as anode materials for Mg-air batteries.This article reviews the effect of alloying elements on the battery discharge properties of Mg alloy anodes.The challenges of Mg-air batteries are also discussed,aiming to provide a depth understanding for the theoretical and practical development of high-performance Mg-air batteries. 展开更多
关键词 Metal-air battery Mg anode Mg alloy Battery performance
下载PDF
Partial Remelting of Thixotropic Magnesium-Rare Earth Alloy from Near Non-Equilibrium-Liquidus Casting 被引量:1
17
作者 乐启炽 王忠军 +1 位作者 崔建忠 徐宝勤 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期737-741,共5页
After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during pa... After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during partial remelting processing, however, coarsening and polygonization as occurred holding time prolonged. The refining and globularity of the thixotropic alloys are promoted after further alloyed by Y, RE, Nd and/or Ag, and the results vary with those addition. The remelting structure of ZK60-2Ca-1Y alloy is finer than its base alloy. And the effect of RE, especially Ag, on the refinement of microstrueture is notable, but Nd does nothing on it. There is little impact of remelting temperature fluctuation on partial remelted microstrueture as holding time in general. On the contrary, it is more sensitive at longer holding time. The quality thixotropic silver-contained alloy can be achieved by remelted partially at 600℃ for 10 min. 展开更多
关键词 magnesium alloy semi-solid slurrying near non-equilibrium liquidus casting partial remelting
下载PDF
Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing 被引量:5
18
作者 Guowei Wang Dan Song +5 位作者 Yanxin Qiao Jiangbo Cheng Huan Liu Jinghua Jiang Aibin Ma Xiaolong Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1422-1439,共18页
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo... Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating. 展开更多
关键词 magnesium-lithium alloy Super-hydrophobic coating One-step hydrothermal process Corrosion resistance Multiscale microstructure
下载PDF
Corrosion behaviour and cytocompatibility of selected binary magnesium-rare earth alloys 被引量:2
19
作者 Hiba Azzeddine Abdelkader Hanna +1 位作者 Achour Dakhouche Bérengère Luthringer-Feyerabend 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期581-591,共11页
The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that th... The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications. 展开更多
关键词 Corrosion CYTOTOXICITY Magnesium alloys Rare earth element Weight loss test
下载PDF
Effect of air-formed film on corrosion behavior of magnesium-lithium alloys 被引量:1
20
作者 Yanlong Ma Lei Liu +4 位作者 Xinxin Zhang Fei Guo Xiaorong Zhou Mingbo Yang Jingfeng Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4325-4337,共13页
It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li ... It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li alloys has not been fully understood. Firstly, the air-formed films formed on α and β phases in a dual-phase LZ91 Mg-Li alloy after exposure to laboratory air for up to 48 h have been examined by SEM under the assistance of ultramicrotomy. Then, the effect of the air-formed film on surface potential and, consequently, corrosion/oxidation behavior of the alloy has been investigated. Finally, in order to exclude the influence from α phase, the structure of the air-formed film on β phase and its effect on corrosion/oxidation behavior of Mg-Li alloys have been studied based on a single-phase LA141 Mg-Li alloy. The results show that the air-formed film is thin and negligible on α phase but thick on β phase after prolonged exposure to laboratory air. The thick air-formed film on β phase has a multilayer structure with an inner layer consisting of Mg O/Mg(OH)_(2) and outer layer consisting of Li_(2)CO_(3), which greatly elevates the surface potential of β phase in air. Both LZ91 and LA141 Mg-Li alloys firstly undergo uniform corrosion and then filiform corrosion when immersed in Na Cl solution and the pre-existed air-formed film on β-Li phase can retard the occurrence of filiform corrosion in the alloys. 展开更多
关键词 magnesium-lithium alloy Air-formed film Uniform corrosion Filiform corrosion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部