期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
1
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED bimetallic N-HYDROXYPHTHALIMIDE Aerobic processes oxidative desulfurization
下载PDF
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
2
作者 Dong-qiang GAO Fu-ying WU +4 位作者 Zhi ZHANG Zi-chuan LU Ren ZHOU Hu ZHAO Liu-ting ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2645-2657,共13页
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre... To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles. 展开更多
关键词 hydrogen storage properties MgH_(2) graphene-loaded Ni−V bimetal oxides catalytic mechanism
下载PDF
Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics 被引量:1
3
作者 Lin Yan Lingshuo Zong +6 位作者 Qi Sun Junpeng Guo Zhenyang Yu Zhijun Qiao Jiuhui Han Zhenyu Cui Jianli Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期163-173,I0005,共12页
Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anod... Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes. 展开更多
关键词 Sodium-ion storage mechanism bimetallic oxide anode material Crystal phase evolution Oxygen vacancies Kinetic analyses
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
4
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
5
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation 被引量:1
6
作者 Ting Zhang Wanzong Wang +3 位作者 Zheng Ma Lei Bai Yue Yao Dongqing Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1816-1823,共8页
Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properti... Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properties. Apart from van-der-Waals heterostructures,herein, we report a novel nanocomposite with the structure of Pt–Ru bimetallic nanoparticles covalently-bonded onto multi-walled carbon nanotubes (MWCNTs)(Pt–Ru@MWCNT), which have been successfully fabricated via a facile and green synthesis method. It is demonstrated that the Pt–Ru@MWCNT nanocomposite possesses much enhanced electrocatalytic activity with the electrochemical active surface area(ECSA) of 110.4 m^(2)·g^(-1)for Pt towards MOR, which is 2.67 and 4.0 times higher than those of 20wt%commercial Pt@C and Pt-based nanocomposite prepared by other method, due to the improved electron-transfer properties originated from M–O–C covalent bonds. This work provides us a new strategy for the structural design of highly-efficient electrocatalysts in boosting MOR performance. 展开更多
关键词 bimetallic Pt-Ru nanocomposite high loaded functionalized multi-walled carbon nanotubes methanol oxidation green hydrothermal synthesis
下载PDF
Bimetallic Cr-In/H-SSZ-13 for selective catalytic reduction of nitric oxide by methane 被引量:4
7
作者 Jun Yang Yupeng Chang +3 位作者 Weili Dai Guangjun Wu Naijia Guan Landong Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期1004-1011,共8页
Bimetallic Cr-In/H-SSZ-13 zeolites were prepared by wet impregnation and investigated for selective catalytic reduction of nitric oxide by methane(CH4-SCR).Reduction-oxidation treatments led to close contact and inter... Bimetallic Cr-In/H-SSZ-13 zeolites were prepared by wet impregnation and investigated for selective catalytic reduction of nitric oxide by methane(CH4-SCR).Reduction-oxidation treatments led to close contact and interaction between Cr and In species in these zeolites,as revealed by transmission electron microscopy and X-ray photoelectron spectroscopy.Compared to monometallic Cr/H-SSZ-13 and In/H-SSZ-13,the bimetallic catalyst system exhibited dramatically enhanced CH4-SCR performance,i.e.,NO conversion greater than 90%and N2 selectivity greater than 99%at 550°C in the presence of 6%H2O under a high gas hourly space velocity of 75 000/h.The bimetallic Cr-In/H-SSZ-13 showed very good stability in CH4-SCR with no significant activity loss for over 160 h.Catalytic data revealed that CH4 and NO were activated on the In and Cr sites of Cr-In/H-SSZ-13,respectively,both in the presence of O2 during CH4-SCR. 展开更多
关键词 Selective catalytic reduction Nitric oxide METHANE Cr-In/H-SSZ-13 bimetallic catalyst
下载PDF
Metal–Oleate Complex?Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance 被引量:1
8
作者 Yingying Cao Kaiming Geng +6 位作者 Hongbo Geng Huixiang Ang Jie Pei Yayuan Liu Xueqin Cao Junwei Zheng Hongwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期250-263,共14页
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode mater... In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4  GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4  GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4  GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4  GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability. 展开更多
关键词 Metal–oleate complex bimetallic oxides NANOPARTICLES Porous architecture 3D GRAPHENE NETWORKS Lithium ion batteries
下载PDF
Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors:Overview 被引量:5
9
作者 Li‑Yuan Zhu Lang‑Xi Ou +3 位作者 Li‑Wen Mao Xue‑Yan Wu Yi‑Ping Liu Hong‑Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期353-427,共75页
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analys... Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analysis.Among various chemiresistive sensing materials,noble metal-decorated semiconducting metal oxides(SMOs)have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals.This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures(e.g.,nanoparticles,nanowires,nanorods,nanosheets,nanoflowers,and microspheres)for high-performance gas sensors with higher response,faster response/recovery speed,lower operating temperature,and ultra-low detection limits.The key topics include Pt,Pd,Au,other noble metals(e.g.,Ag,Ru,and Rh.),and bimetals-decorated SMOs containing ZnO,SnO_(2),WO_(3),other SMOs(e.g.,In_(2)O_(3),Fe_(2)O_(3),and CuO),and heterostructured SMOs.In addition to conventional devices,the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed.Moreover,the relevant mechanisms for the sensing performance improvement caused by noble metal decoration,including the electronic sensitization effect and the chemical sensitization effect,have also been summarized in detail.Finally,major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed. 展开更多
关键词 Noble metal bimetal Semiconducting metal oxide Chemiresistive gas sensor Electronic sensitization Chemical sensitization
下载PDF
Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles 被引量:8
10
作者 Jianwei Che Mengjia Hao +4 位作者 Wuzhong Yi Hisayoshi Kobayashi Yuheng Zhou Liping Xiao Jie Fan 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第11期1870-1879,共10页
The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired ... The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired product toluene,thereby enhancing the selectivity towards benzaldehyde.This result was attributed to a dual effect of Ni addition:the weakening of dissociative adsorption of benzyl alcohol and the promotion of oxygen species involved in the oxidation pathway. 展开更多
关键词 Palladium‐nickel bimetallic nanoparticle Benzyl alcohol TOLUENE Solvent‐free oxidation
下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:5
11
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 Glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone bimetallic Au-Pt catalyst Synergetic effect
下载PDF
Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO_(2) sphere as an advanced nanocatalyst for highly efficient toluene oxidation 被引量:2
12
作者 Jiaqin He Dongyun Chen +4 位作者 Najun Li Qingfeng Xu Hua Li Jinghui He Jianmei Lu 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1349-1360,共12页
Improving catalytic performance is a yet still challenge in thermal catalytic oxidation.Herein,uniform mesoporous MnO_(2) nanospheresupported bimetallic Pt–Pd nanoparticles were successfully fabricated via a SiO_(2) ... Improving catalytic performance is a yet still challenge in thermal catalytic oxidation.Herein,uniform mesoporous MnO_(2) nanospheresupported bimetallic Pt–Pd nanoparticles were successfully fabricated via a SiO_(2) template strategy for the total catalytic degradation of volatile organic compounds at low temperature.The introduction of mesopores into the MnO_(2) support induces a large specific surface area and pore size,thus providing numerous accessible active sites and enhanced diffusion properties.Moreover,the addition of a secondary noble metal can adjust the O_(ads)/O_(latt) molar ratios,resulting in high catalytic activity.Among them,the catalyst having a Pt/Pd molar ratio of 7:3 exhibits optimized catalytic activity at a weight hourly space velocity of 36,000 mL g^(-1) h^(-1),reaching 100%toluene oxidation at 175℃ with a lower activation energy(57.0 kJ mol^(-1))than the corresponding monometallic Pt or non-Pt-based catalysts(93.8 kJ mol^(-1) and 214.2 kJ mol^(-1)).Our findings demonstrate that the uniform mesoporous MnO_(2) nanosphere-supported bimetallic Pt–Pd nanoparticles catalyst is an effective candidate for application in elimination of toluene. 展开更多
关键词 MnO_(2)nanospheres Mesoporous structure Pt-Pd bimetal VOCs oxidation
下载PDF
Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting
13
作者 Ji Chen Yifan Zhao +7 位作者 Shuwen Zhao Hua Zhang Youyu Long Lingfeng Yang Min Xi Zitao Ni Yao Zhou Anran Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期414-420,共7页
Electrocatalytic water splitting is the most directly available route to generate renewable and sustainable hydrogen.Here,we report the design of a composite material in which arrays of square pillar-like NiMoO4nanoro... Electrocatalytic water splitting is the most directly available route to generate renewable and sustainable hydrogen.Here,we report the design of a composite material in which arrays of square pillar-like NiMoO4nanorods coated with N,P-doped carbon layers are uniformly contained in numerous nested nanoparticle structures.The catalysts have superior catalytic activity,requiring only 59 mV and 187 mV for HER and OER to attain a current density of 10 mA/cm^(2),respectively.The assembled two-electrode electrolytic cell required a voltage of 1.48 V to reach 10 mA/cm^(2),along with excellent long-term stability.Theoretical calculations reveal that electrons aggregate and redistribute at the heterogeneous interface,with the d-band centers of the Ni and Fe atoms being positively shifted compared to the Fermi level,effectively optimizing the adsorption of intermediates and reducing the Gibbs free energy,thus accelerating the catalytic process.Meanwhile,an integrated solar-driven water-splitting system demonstrated a high and stable solar-to-hydrogen efficiency of 18.20%.This work provides new possibilities for developing non-precious metal-based bifunctional electrocatalysts for large-scale water splitting applications. 展开更多
关键词 Hydrogen evolution reaction bimetallic oxides bimetallic phosphides Overall water splitting Solar-to-hydrogen efficiency
原文传递
Bimetallic water oxidation: One-site catalysis with two-sites oxidation
14
作者 Fei Xie Ming-Tian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期1-7,I0001,共8页
Water oxidation is the key half reaction to achieve full splitting of water to hydrogen and oxygen.Herein,a binuclear complex,[(L^(4-))Co_(2)~Ⅲ(OH)]ClO_(4),was reported as a stable and efficient homogenous catalyst f... Water oxidation is the key half reaction to achieve full splitting of water to hydrogen and oxygen.Herein,a binuclear complex,[(L^(4-))Co_(2)~Ⅲ(OH)]ClO_(4),was reported as a stable and efficient homogenous catalyst for electrocatalytic water oxidation in 0.1 M phosphate buffer(pH 7.0).Cyclic voltammetry experiments indicated that the catalytic process proceed via "one-site catalysis with two-sites oxidation" mechanism in which both two metal sites store the required oxidation equivalents for water oxidation and O-O bond formation occurs by single-site water nucleophilic attack(WNA). 展开更多
关键词 Water oxidation bimetallic catalysis O-O bond formation Cobalt catalyst Oxygen evolution
下载PDF
An examination of active sites on Au-Ag bimetallic catalysts based on CO oxidation over Au/Ag_2O and a comparison to Ag-contaminated Au powder
15
作者 Yasuo Iizuka Yasuhiro Hiragi +1 位作者 Hikaru Yakushiji Takumi Miura 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1712-1720,共9页
There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact inter... There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites. 展开更多
关键词 Gold-silver bimetallic catalyst Synergy effect Carbon monoxide oxidation Active site Gold-silver alloy
下载PDF
NO Adsorption on Ag/Pt(110)-(1×2) Bimetallic Surfaces: Unexpected Formation of Nitrite/nitrate Surface Species
16
作者 李金兵 姜志全 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第6期735-740,I0004,共7页
NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An une... NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1 ×2) bimetallic surfaces is observed, then decompose at elevated temperatures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to high reactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate. 展开更多
关键词 Nitric oxide Ag-Pt bimetallic surface Nitrite/nitrate surface species Synergetic effect
下载PDF
Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol 被引量:3
17
作者 Zuojun Wei Xinmiao Zhu +4 位作者 Xiaoshuang Liu Haiqin Xu Xinghua Li Yaxin Hou Yingxin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期369-378,共10页
In the present work, a series of Pt-based catalysts, alloyed with a second metal, i.e., Re, Sn, Er, La, and Y, and supported on activated carbon, ordered mesoporous carbon, N-doped mesoporous carbon or reduced graphen... In the present work, a series of Pt-based catalysts, alloyed with a second metal, i.e., Re, Sn, Er, La, and Y, and supported on activated carbon, ordered mesoporous carbon, N-doped mesoporous carbon or reduced graphene oxide(rGO), have been developed for selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Re and rGO were proved to be the most favorable metal dopant and catalyst support, respectively. Pt_(50) Re_(50)/rGO showed the highest cinnamylalcohol selectivity of 89% with 94% conversion of cinnamaldehyde at the reaction conditions of 120 °C, 2.0 MPaH_2 and 4 h. 展开更多
关键词 CATALYST HYDROGENATION SELECTIVITY CINNAMALDEHYDE bimetal Reduced Graphene oxide
下载PDF
Synthesis and catalytic property of Cu-Mn-Ce/γ-Al_2O_3 complex oxide 被引量:1
18
作者 黄可龙 王红霞 +1 位作者 刘素琴 桂客 《中国有色金属学会会刊:英文版》 CSCD 2002年第2期317-320,共4页
A new type of catalytic material for purification of automobile exhaust, Cu Mn Ce O/ γ Al 2O 3, has been studied. The factors affecting its catalytic activity, such as calcination temperature and the period of calcin... A new type of catalytic material for purification of automobile exhaust, Cu Mn Ce O/ γ Al 2O 3, has been studied. The factors affecting its catalytic activity, such as calcination temperature and the period of calcinations and so on have been investigated. Its catalytic activity after SO 2 poisoning was determined in a fixed bed reactor by exposing the sample to the atmosphere of 160?mL/min SO 2/air. The study reveals that the catalyst has shown high catalytic activities for the conversion of NH 3 oxidation by NO after sulfate. The conversion of NO reduction over the sulfated catalyst is somewhat higher than that over the fresh catalyst except that the optimum temperature has increased about 100?℃. Also at the optimum process for the experiment, the selective catalytic oxidation of CO by NO is over 76% and the conversion of NO reduction is over 80% by NH 3. 展开更多
关键词 材料精炼 汽车排气 催化活性 双金属氧化催化 Cu-Mn-Ce/γ-Al2O3合成氧化 催化特性
下载PDF
A mechanic insight into low-temperature catalytic combustion toward ethylene oxide over Pt-Ru/CuCeO_(x) bimetallic catalyst
19
作者 Wenxi Zhou Kai Chen +7 位作者 Quanli Ke Haoru Wang Xiao Chen Yufeng Liu Guokai Cui Xiaole Weng Ying Zhou Hanfeng Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第6期881-888,I0003,共9页
The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorpti... The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorption and subsequent impregnation.The catalytic tests show that the introduction of Ru into the Pt catalyst,so as to form Pt-Ru bimetallic active sites,can greatly increase the oxidation activity of the catalyst,as evidenced by the extremely lower full oxidation temperature(120℃)when compared with that of the Pt/CeO_(2) catalyst(160℃).The XPS spectra show that the Ru species(mainly RuO_(x))have strong interaction with the CuCeO_(x) support,which can therefore affect the electron transfer between the Pt species and the support.As a result,the oxygen activation on Pt species is obviously facilitated and catalytic activity is enhanced.Finally,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)was used to track the reaction mechanism.It is found that the catalytic oxidation process follows the MvK catalytic mechanism at low temperature and the L-H catalytic mechanism when the temperature moves to higher range. 展开更多
关键词 Ethylene oxide bimetallic catalyst Catalytic oxidation Degradation pathway Mechanism Rare earths
原文传递
Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-Promoted MnO_(2)
20
作者 Xin Yu Tingke Jin +10 位作者 Huiqiang Wang Guoqing Zhang Wenlong Jia Lincai Peng Yong Sun Xing Tang Xianhai Zeng Shuliang Yang Zheng Li Feng Xu Lu Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1683-1692,共10页
A cost-effective and sustainable noble-metal free catalyst system based on ubiquitously available Mn-Cu bimetallic oxides was served as efficient catalysts for furfural selective oxidation to furancarboxylic acid(FA).... A cost-effective and sustainable noble-metal free catalyst system based on ubiquitously available Mn-Cu bimetallic oxides was served as efficient catalysts for furfural selective oxidation to furancarboxylic acid(FA). Interestingly, Mn_(2)Cu_(1)O_(x)exhibited an excellent furfural conversion of 99% with quantitative selectivity toward FA. Especially, we demonstrate the significant weakening of the Mn-O bonds with the incorporation of CuO into the Mn-Cu oxides, resulting in an improved OLreactivity of Mn_(2)Cu_(1)O_(x), which brings about a higher catalytic activity for furfural oxidation. More importantly, Mn_(2)Cu_(1)O_(x)could exhibit YFA>90% over 5 cycles of reusability test. Through this study, the relationship between the morphology, surface chemistry, and catalytic activity of Mn-Cu bimetallic oxides are elucidated, providing a simple and environmentally friendly catalytic strategy and scientific basis for the development of Mn-Cu bimetallic oxides bioderived molecular aerobic oxidation materials. 展开更多
关键词 FURFURAL Mn–Cu bimetallic oxides oxidation Lattice oxygen Furancarboxylic acid
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部