In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized....In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.展开更多
文摘In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.