期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Controlled synthesis of hollow magnetic Fe3O4 nanospheres: Effect of the cooling rate 被引量:2
1
作者 Yong Hong Hongbing Shi +3 位作者 Xia Shu Yuchun Zheng Yong Zhang Yucfieng Wu 《Particuology》 SCIE EI CAS CSCD 2017年第4期24-28,共5页
The controlled synthesis of hollow magnetite (Fe3O4) nanospheres of varying sizes and structures was successfully obtained via a facile solvothermal process and varying cooling processes. The Fe3O4 nanospheres were ... The controlled synthesis of hollow magnetite (Fe3O4) nanospheres of varying sizes and structures was successfully obtained via a facile solvothermal process and varying cooling processes. The Fe3O4 nanospheres were characterized by X-ray diffraction, transmission electron microscopy, scanning elec- tron microscopy, and superconducting quantum interference device magnetometry. The diameters of the as-synthesized nanospheres were controlled at around 500-700 nm by simply changing the cool- ing rate, which had an obvious influence on the morphology and magnetic properties of these Fe3O4 nanospheres. While a low cooling rate triggered the formation and extension of the cracks present in the Fe3O4 nanospheres, a sudden drop of temperature tended to favor multi-site nucleation of the crystals as well as the formation of compact and smooth hollow nanospheres with superior crystallinity and high saturation magnetization. The growth mechanism of hollow magnetite oxide nanospheres was proposed and the correlation between the structure and the magnetic properties of the hollow nanospheres was discussed, which promises the potential of the hollow nanospheres in various applications such as drug delivery and cell separation. 展开更多
关键词 Solvothermal method fe3o4 nanosphere Hollow structure Cooling rate magnetic property
原文传递
Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes 被引量:1
2
作者 杜萌 曹兴忠 +3 位作者 夏锐 周忠坡 靳硕学 王宝义 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期581-587,共7页
The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship... The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials. 展开更多
关键词 microstructure CS/PVA/fe3o4 membrane positron annihilation magnetic properties
下载PDF
Deposition and Magnetic Properties of Fe_3O_4/Fe/Fe_3O_4 Tri-layer Films 被引量:2
3
作者 T.S.Chin and W.C.Yang (Department of Materials Science and Engineering, Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu, 30043, Taiwan-China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期191-194,共4页
The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic pr... The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic properties and phases under different sandwich and annealing conditions were studied. In MIM structure, the incorporation of the interlayer iron does increase the magnetization measured under 8 kOe (M_8K), but reduce coercivity (H_c). The H_c of asdeposited films decreases from 354 Oe to 74 Oe; while M_8K increases from 254 to 392 emu/cc. By annealing in air, the whole MIM tri-layer film becomes γ-F_e2O_3, H_c is about 550 O_e and M_8K is around 250 emu/cc. The coercivity mechanism of as-deposited and annealed MIM trilayer films belongs to domain-wall pinning type. δM plots show that when the interlayer Fe thickness is 12 um, the Fe and Fe_3O_4 layers are decoupled in the as-deposited and annealed states; while it is coupled in the as deposited state when the Fe thickness increases to 23 um. Vacuum annealing of the MIM films leads to increase in both coercivity and magnetization, and to enhance the exchange coupling between layers. 展开更多
关键词 FE Deposition and magnetic Properties of fe3o4/Fe/fe3o4 Tri-layer Films
下载PDF
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
4
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 fe3o4 magnetic nanoparticles MODIFICATION TRYPSIN IMMOBILIZATION L-DOPA DOPAMINE
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
5
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 FE acac in IS on of Controllable Synthesis and magnetic Properties of Monodisperse fe3o4 Nanoparticles
下载PDF
Preparation of Fe_3O_4/PS Magnetic Particles by Dispersion Polymerization
6
作者 Xiao Bin DING Hua Zhong SUN +1 位作者 Guo Xiang WAN Ying Yan JIANG(a Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041b Beijing Institute of Chemistry,Chinase Academy of science , BeiJing 100080) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第2期183-184,共2页
Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obt... Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obtained by different reaction conditions.Some parameters such as ethanol, PEG and monomer which affect particle size diameter and size distribution are discussed briefly in this paper. 展开更多
关键词 PS Preparation of fe3o4/PS magnetic Particles by Dispersion Polymerization FE
下载PDF
Synthesis of mesoporous γ-AlOOH@Fe_3O_4 magnetic nanomicrospheres 被引量:3
7
作者 Yuanyuan Zheng Shengfu Ji +2 位作者 Hongfei Liu Ming Li Hao Yang 《Particuology》 SCIE EI CAS CSCD 2012年第6期751-758,共8页
Mesoporous γ-AIOOH@Fe3O4 magnetic nanomicrospheres were synthesized using superparamagnetic Fe304 nanoparticles as the core and aluminum isopropoxide (ALP) as the aluminum source. The obtained magnetic nanomicrosph... Mesoporous γ-AIOOH@Fe3O4 magnetic nanomicrospheres were synthesized using superparamagnetic Fe304 nanoparticles as the core and aluminum isopropoxide (ALP) as the aluminum source. The obtained magnetic nanomicrospheres were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM). The effects of preparation parameters such as hydrolysis time of AIP, concentration of AlP and coating layer number on microspheres were investigated. The results indicated that the mesoporous γ-AIOOH@Fe3O4 magnetic nanomicrospheres consisted of a mesoporous γ-AIOOH shell and a Fe3O4 magnetic core. The diameter of γ-AIOOH@Fe3O4 nanomicrospheres was about 200 nm, the thickness of mesoporous γ-AIOOH shell was about 5 nm and the average pore size was 3.8 nm. The thickness of the mesoporous γ-AIOOH shell could be controlled via layer-by-layer coating times. The formation mechanism of the mesoporous γ-AIOOH shell involved a "chemisorption-hydrolysis" process. 展开更多
关键词 magnetic nanomicrospheres fe3o4 γ-AIOOH shellMesoporousHydrolysis
原文传递
Precise synthesis of discrete and dispersible carbon- protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy 被引量:3
8
作者 An-Hui Lu Xiang-Qian Zhang +4 位作者 Qiang Sun Yan Zhang Qingwei Song Ferdi Schuth Fang Cheng 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1460-1469,共10页
Carbon-protected magnetic nanoparticles exhibit long-term stability in acid or alkaline medium, good biocompatibility, and high saturation magnetization. As a result, they hold great promise for magnetic resonance ima... Carbon-protected magnetic nanoparticles exhibit long-term stability in acid or alkaline medium, good biocompatibility, and high saturation magnetization. As a result, they hold great promise for magnetic resonance imaging, photothermal therapy, etc. However, since pyrolysis, which is often required to convert the carbon precursors to carbon, typically leads to coalescence of the nanoparticles, the obtained carbon-protected magnetic nanoparticles are usually sintered as a non-dispersible aggregation. We have successfully synthesized discrete, dispersible, and uniform carbon-protected magnetic nanoparticles via a precise surface/interface nano-engineering approach. Remarkably, the nanoparticles possess excellent water-dispersibility, biocompatibility, a high T2 relaxivity coefficient (384 mM^-1·s^-1), and a high photothermal heating effect. Furthermore, they can be used as multifunctional core components suited for future extended investigation in early diagnosis, detection and therapy, catalysis, separation, and magnetism. 展开更多
关键词 magnetic nanoparticles carbon fe3o4 magnetic resonanceimaging (MRI) colloidal suspensions photothermal therapy
原文传递
Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid 被引量:2
9
作者 Hang Zheng Hui-Ping Shao +2 位作者 Tao Lin Zi-Fen Zhao Zhi-Meng Guo 《Rare Metals》 SCIE EI CAS CSCD 2018年第9期803-807,共5页
In this study, silicone-oil-based γ-Fe2O3 mag- netic fluid was successfully prepared by thermal oxidizing of Fe3O4 magnetic nanoparticles, which were prepared by chemical co-precipitation with FeSO4-7H2O and FeCl3- 6... In this study, silicone-oil-based γ-Fe2O3 mag- netic fluid was successfully prepared by thermal oxidizing of Fe3O4 magnetic nanoparticles, which were prepared by chemical co-precipitation with FeSO4-7H2O and FeCl3- 6H2O, and their surface was modified by oleate ligands. Silicone oil was used as carrier liquid and oleic acid was as surfactant for preparing γ-Fe2O3 magnetic fluid. It is found that the Fe3O4 nanoparticles surrounded by oleate ligands are not damaged during the thermal oxidizing. The shape of γ-Fe2O3 magnetic nanoparticles prepared is similar to spherical, and their mean size is about 10-20 nm, which has nothing obvious difference compared with Fe3O4. Thesaturation magnetization of γ-Fe2O3 magnetic fluid pre-pared is 14.25 A.me.kg-1 and that of γ-Fe2O3 nanoparti-cles is 57.56 A.m2.kg-1. The needle of γ-Fe2O3 magneticfluid is much bigger than that of Fe3O4 magnetic fluidunder the same magnetic field, which shows better mag-netic properties. 展开更多
关键词 fe3o4 magnetic particles γ-Fe2O3 magneticparticles γ-Fe2O3 magnetic fluid Saturation magnetization
原文传递
Rapid degradation of dyes in water by magnetic Fe^0/Fe_3O_4/graphene composites 被引量:5
10
作者 Shan Chong Guangming Zhang +1 位作者 Huifang Tian He Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第6期148-157,共10页
Magnetic Fe^0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scan... Magnetic Fe^0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), vibrating-sample magnetometer(VSM) measurements and X-ray photoelectron spectroscopy(XPS). The results indicated that Fe^0/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe^0/Fe3O4/graphene and pollutants. Fe^0/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe^0/Fe3O4/graphene rapidly. After 20 min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe^0/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe^0/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water. 展开更多
关键词 Fe^0/fe3o4/graphene magnetic Dyes Removal Reduction
原文传递
Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A^3-coupling synthesis of propargylamines 被引量:2
11
作者 Maryam Mirabedini Elaheh Motamedi Mohammad Zaman Kassaee 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第9期1085-1090,共6页
Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be a... Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be an efficient catalyst for the A^3-coupling of aldehydes,amines,and alkynes through C-H activation.Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields. 展开更多
关键词 CuO Graphene oxide fe3o4 A^3-coupling Nano-catalyst magnetic nanoparticles
原文传递
A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles 被引量:1
12
作者 Nurul Hidayah Abdullah Kamyar Shameli +1 位作者 Ezzat Chan Abdullah Luqman Chuah Abdullah 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第7期1590-1596,共7页
A facile and green synthetic approach for fabrication of starch-stabilized magnetite nanoparticles was implemented at moderate temperature. This synthesis involved the use of iron salts, potato starch,sodium hydroxide... A facile and green synthetic approach for fabrication of starch-stabilized magnetite nanoparticles was implemented at moderate temperature. This synthesis involved the use of iron salts, potato starch,sodium hydroxide and deionized water as iron precursors, stabilizer, reducing agent and solvent respectively. The nanoparticles(NPs) were characterized by UV-vis, PXRD, HR-TEM, FESEM, EDX, VSM and FT-IR spectroscopy. The ultrasonic assisted co-precipitation technique provides well formation of highly distributed starch/Fe3O4-NPs. Based on UV–vis analysis, the sample showed the characteristic of surface plasmon resonance in the presence of Fe3O4-NPs. The PXRD pattern depicted the characteristic of the cubic lattice structure of Fe3O4-NPs. HR-TEM analysis showed the good dispersion of NPs with a mean diameter and standard deviation of 10.68 4.207 nm. The d spacing measured from the lattice images were found to be around 0.30 nm and 0.52 nm attributed to the Fe3O4 and starch, respectively. FESEM analysis confirmed the formation of spherical starch/Fe3O4-NPs with the emission of elements of C, O and Fe by EDX analysis. The magnetic properties illustrated by VSM analysis indicated that the as synthesized sample has a saturation magnetization and coercivity of 5.30 emu/g and 22.898 G respectively.Additionally, the FTIR analysis confirmed the binding of starch with Fe3O4-NPs. This method was cost effective, facile and eco-friendly alternative for preparation of NPs. 展开更多
关键词 Nanoparticles fe3o4 Starch magnetic properties Vibrating sample magnetometer
原文传递
Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3. cations
13
作者 Tun Seng Herng Wen Xiao +12 位作者 Sock Mui Poh Feizhou He Ronny Sutarto Xiaojian Zhu Runwei Li Xinmao Yin Caozheng Diao Yang Yang Xuelian Huang Xiaojiang Yu Yuan Ping Feng AndrivoRusydi Jun Ding 《Nano Research》 SCIE EI CAS CSCD 2015年第9期2935-2945,共11页
Magnetite Fe304 (ferrite) has attracted considerable interest for its exceptional physical properties: It is predicted to be a semimetallic ferromagnetic with a high Curie temperature, it displays a metal-insulator... Magnetite Fe304 (ferrite) has attracted considerable interest for its exceptional physical properties: It is predicted to be a semimetallic ferromagnetic with a high Curie temperature, it displays a metal-insulator transition, and has potential oxide-electronics applications. Here, we fabricate a high-magnetization (〉 1 Tesla) high-resistance (-0.1 Ωcm) sub-nanostructured (grain size 〈 3 nm) Fe304 film via grain-size control and nano-engineering. We report a new phenomenon of spin- flipping of the valence-spin tetrahedral FeB* in the sub-nanostructured Fe304 film, which produces the high magnetization. Using soft X-ray magnetic circular dichroism and soft X-ray absorption, both at the Fe L3,2- and O K-edges, and supported by first-principles and charge-transfer multiple calculations, we observe an anomalous enhancement of double exchange, accompanied by a suppression of the superexchange interactions because of the spin-flipping mechanism via oxygen at the grain boundaries. Our result may open avenues for developing spin- manipulated giant magnetic Fe304-based compounds via nano-grain size control. 展开更多
关键词 magnetite X—ray magnetic circulardichroism(XMCD) giant magnetization nanosuctured—fe3o4 ferrite spin—flipping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部