期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
1
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 fe3o4 magnetic nanoparticles MODIFICATION TRYPSIN IMMOBILIZATION L-DOPA DOPAMINE
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
2
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 FE acac in IS on of Controllable Synthesis and magnetic Properties of Monodisperse fe3o4 nanoparticles
下载PDF
Precise synthesis of discrete and dispersible carbon- protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy 被引量:3
3
作者 An-Hui Lu Xiang-Qian Zhang +4 位作者 Qiang Sun Yan Zhang Qingwei Song Ferdi Schuth Fang Cheng 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1460-1469,共10页
Carbon-protected magnetic nanoparticles exhibit long-term stability in acid or alkaline medium, good biocompatibility, and high saturation magnetization. As a result, they hold great promise for magnetic resonance ima... Carbon-protected magnetic nanoparticles exhibit long-term stability in acid or alkaline medium, good biocompatibility, and high saturation magnetization. As a result, they hold great promise for magnetic resonance imaging, photothermal therapy, etc. However, since pyrolysis, which is often required to convert the carbon precursors to carbon, typically leads to coalescence of the nanoparticles, the obtained carbon-protected magnetic nanoparticles are usually sintered as a non-dispersible aggregation. We have successfully synthesized discrete, dispersible, and uniform carbon-protected magnetic nanoparticles via a precise surface/interface nano-engineering approach. Remarkably, the nanoparticles possess excellent water-dispersibility, biocompatibility, a high T2 relaxivity coefficient (384 mM^-1·s^-1), and a high photothermal heating effect. Furthermore, they can be used as multifunctional core components suited for future extended investigation in early diagnosis, detection and therapy, catalysis, separation, and magnetism. 展开更多
关键词 magnetic nanoparticles carbon fe3o4 magnetic resonanceimaging (MRI) colloidal suspensions photothermal therapy
原文传递
Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A^3-coupling synthesis of propargylamines 被引量:2
4
作者 Maryam Mirabedini Elaheh Motamedi Mohammad Zaman Kassaee 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第9期1085-1090,共6页
Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be a... Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be an efficient catalyst for the A^3-coupling of aldehydes,amines,and alkynes through C-H activation.Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields. 展开更多
关键词 CuO Graphene oxide fe3o4 A^3-coupling Nano-catalyst magnetic nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部