A novel method for measuring differences of microstructure by advanced use of the Faraday magneto-optical effect is proposed. Two groups of YAG laser welds on Q235 have been investigated in order to compare MO imaging...A novel method for measuring differences of microstructure by advanced use of the Faraday magneto-optical effect is proposed. Two groups of YAG laser welds on Q235 have been investigated in order to compare MO imaging and traditional methods. Microstructure images have been compared with MO images, and MO diagrams display different colors and gray scales for the base metal, the weld zone, and the heat affected zone. Experimental results indicate that the welded joint microstructure can be inspected by MO imaging without metallographic preparation.展开更多
We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable...We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.展开更多
Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodbo...Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodborne pathogens is still a major problem faced by humans in all world.The conventional analytical methods currently used involve complex bacteriological tests and usually take several days for incubation and analysis.Thus,in order to prevent the spread of disease,the development of a detection method with high speed,high accuracy and sensitivity is urgent and necessary.Herein,we developed an approach for the identification and magnetic capture of L.monocytogenes by using core@shell Fe_(3)O_(4)@silica nanoparticles terminated with hydroxyl or amine groups.Our results show that both amine-and hydroxyl-terminated Fe_(3)O_(4)@silica core@shell nanoparticles functionalized with specific antibodies,present 95.2%±6.2%and 98.6%±0.3%capture efficacies,respectively.However,without conjugating the specific antibodies,the hydroxyl-terminated Fe_(3)O_(4)@silica nanoparticles exhibit 17.6%±1.6%efficacy,while the amine-terminated one remains 93.2%±9.2%capture efficiency ascribed to the high affinity.This study quantitatively uncovers the specific and non-specific recognitions relevant to the molecular-scale physiochemical interactions between the microorganisms and the functionalized particles,and the results from this work can be generalized and extended to other bacterial species by changing antibodies,also have important implications in developing advanced analytic methods.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51675104)the Science and Technology Planning Project of Guangzhou,China(Grant No.201510010089)the Science and Technology Planning Public Project of Guangdong Province,China(Grant No.2016A010102015)
文摘A novel method for measuring differences of microstructure by advanced use of the Faraday magneto-optical effect is proposed. Two groups of YAG laser welds on Q235 have been investigated in order to compare MO imaging and traditional methods. Microstructure images have been compared with MO images, and MO diagrams display different colors and gray scales for the base metal, the weld zone, and the heat affected zone. Experimental results indicate that the welded joint microstructure can be inspected by MO imaging without metallographic preparation.
基金Project supported by the National Key Basic Research and Development Program of China(Grant Nos.2012CB821302 and 2016YFA0302103)the National Natural Science Foundation of China(Grant No.11134003)+1 种基金the National High Technology Research and Development Program of China(Grant No.2014AA123401)the Shanghai Excellent Academic Leaders Program of China(Grant No.12XD1402400)
文摘We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.
基金financially supported by the National Natural Science Foundation of China(Nos.U1704253 and U1908220)the Fundamental Research Funds for the Central Universities(No.N180206001)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1807177)the Zhejiang Provincial Natural Science Foundation of China(No.LR18E010001)。
文摘Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodborne pathogens is still a major problem faced by humans in all world.The conventional analytical methods currently used involve complex bacteriological tests and usually take several days for incubation and analysis.Thus,in order to prevent the spread of disease,the development of a detection method with high speed,high accuracy and sensitivity is urgent and necessary.Herein,we developed an approach for the identification and magnetic capture of L.monocytogenes by using core@shell Fe_(3)O_(4)@silica nanoparticles terminated with hydroxyl or amine groups.Our results show that both amine-and hydroxyl-terminated Fe_(3)O_(4)@silica core@shell nanoparticles functionalized with specific antibodies,present 95.2%±6.2%and 98.6%±0.3%capture efficacies,respectively.However,without conjugating the specific antibodies,the hydroxyl-terminated Fe_(3)O_(4)@silica nanoparticles exhibit 17.6%±1.6%efficacy,while the amine-terminated one remains 93.2%±9.2%capture efficiency ascribed to the high affinity.This study quantitatively uncovers the specific and non-specific recognitions relevant to the molecular-scale physiochemical interactions between the microorganisms and the functionalized particles,and the results from this work can be generalized and extended to other bacterial species by changing antibodies,also have important implications in developing advanced analytic methods.