Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bat...Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.展开更多
Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorptio...Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorption,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometry(VSM).The evolution behaviors and transition mechanism of Fe3O4 during the preparation of MAC were investigated.The results show that prepared MAC with 6 wt%Fe3O4 addition having a specific surface area and mesopore ratio of 370 m^2·g^-1 and 55.7%,which meet the requirements of adsorption application and magnetic recovery.Highly dispersed iron-containing aggregates with the size of 0.1 lm in the MAC were observed.During the preparation of MAC,Fe3O4 could enhance the escape of volatiles during the carbonization.Fe3O4 could also accelerate burning off the carbon wall during activation,which leads to enlarging micropore size,then resulting in the generation of mesopore and macropore.As a result,a part of Fe3O4 converted into FeO,FeOOH,a-Fe,c-Fe,Fe2SiO4 and compound of Aluminum-iron-silicon.The prepared activated carbon,which was magnetized by both of residual Fe3O4,reduced a-Fe and c-Fe,can be easily separated from the original solution by external magnetic field.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this artic...The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this article, the effects of oxygen and carbon on the properties and microstructure of the magnets have been studied. The results indicate that oxygen consumes the effective Sm content of the magnets and forms Sm2O3-the non-magnetism phase, which result in the deterioration of the magnetic properties. Besides, the magnetic properties decrease in evidence with increasing carbon content. The main factor that affects the magnetic properties is the deterioration of the microstructure of the magnets. The Sm(Co, Cu)5 phase decreases, whereas the cell size increases with the increase of the carbon content. When the carbon content is above 0.43 wt.%, the Sm(Co, Cu)5 phase is not enough to form a uniform cellular microstructure. Thus the magnetic properties disappear. ZrC is detected in the magnets by XRD when the carbon content is above 0.21 wt.%. ZrC also reduces the properties of the magnets.展开更多
Objective In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. Methods We conducted T2-Weighted Mag...Objective In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. Methods We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. Results Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. Conclusion The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.展开更多
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy c...Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.展开更多
Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthraci...Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.展开更多
Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the remov...Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(VI) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(VI) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(VI) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The ob- tained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ.mol 1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.展开更多
AIM: To evaluate the effects of using CO2 as negative contrast agent in decreasing the overlapping on the pancreaticobiliary system from intestinal fluids.METHODS:We evaluated the magnetic resonance cholangiopancreato...AIM: To evaluate the effects of using CO2 as negative contrast agent in decreasing the overlapping on the pancreaticobiliary system from intestinal fluids.METHODS:We evaluated the magnetic resonance cholangiopancreatography(MRCP) images in 117 patients divided into two groups(group 1,without taking gas producing crystals to produce CO2,n=64;group 2,with CO2,n=53)in a 1.5T unit using MRCP sequence.Anatomic locations of intestinal fluids distribution,overlapping with common bile duct(CBD)and pancreatic duct(PD),were evaluated.RESULTS:In the group with CO2,the decrease in distribution of intestinal fluids was significant in the gastric antrum(P=0.001)and duodenal bulb(P<0.001),but not in the gastric fundus and body and in the second portion of the duodenum(P=1.000,P=0.171,and P=0.584 respectively).In the group with CO2,the decrease in overlapping with CBD was significant(P< 0.001),but the decrease in overlapping with PD was not (P=0.106).CONCLUSION:MRCP with carbon dioxide as negative contrast agent would decrease intestinal fluids in the gastric antrum and duodenal bulb,thereby decreasing overlapping with the CBD.展开更多
The dispersion effect of carbon nanofibers (CNFs) in aqueous solution and the mechanical properties, porosity, pore size distribution and microstructure of CNFs reinforced cement-based composites were investigated i...The dispersion effect of carbon nanofibers (CNFs) in aqueous solution and the mechanical properties, porosity, pore size distribution and microstructure of CNFs reinforced cement-based composites were investigated in this paper. To achieve effective dispersion of CNFs, a method utilizing ultrasonic processing and a commercially surfactant were employed. CNFs were incorporated to cementitious materials with the addition of 0.1 wt% and 0.2 wt% of cement with a water/cement ratio of 0.35. The mechanical properties of CNFs/ cement composites were analyzed, the porosity and pore size distribution were characterized by ^1H low field nuclear magnetic resonance (NMR), and the microstructure was observed by scanning electron microscopy (SEM). The results indicate that the optimum concentration ratio of MC to CNFs is 2:1 for dispersing in aqueous solution. Moreover, in the field of mechanical properties, CNFs can improve the flexural strength and compressive strength. The increased mechanical properties and the decreased porosity of the matrices correspond to the increasing CNFs content and CNFs act as bridges and networks across cracks and voids.展开更多
The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterize...The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.展开更多
Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of ...Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.展开更多
The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization...The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.展开更多
In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization inc...In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs.By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5 ± 9.8 μB(Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.展开更多
Magnetic susceptibility(MS)data were obtained from 11 sections of the Doushantuo(Edicaran)cap carbonate that directly overlies the Nantuo glacial diamictite in the southeastern margin of the Yangtze plat-form.The MS d...Magnetic susceptibility(MS)data were obtained from 11 sections of the Doushantuo(Edicaran)cap carbonate that directly overlies the Nantuo glacial diamictite in the southeastern margin of the Yangtze plat-form.The MS data revealed two regionally correlatable peaks at the bottom and top of the cap carbonate,sepa-rated by an interval of low values.The lower MS peak coincides with high percentage of insoluble siliciclastic residues that are compositionally identical to the matrix of the underlying diamictite,suggesting its origin con-trolled mainly by detrital components during the first phase of cap carbonate deposition at the end of the glacia-tion.The upper MS peak is associated with high clay content and iron sulfides,and can be interpreted as either derived from enhanced greenhouse weathering that could have brought more terrigenous components into the ocean,or the result of ocean anoxia at the late stage of cap carbonate deposition that could led to formation of abundant iron sulfides.The regionally consistent MS curves from the cap carbonates provided the first geo-physical record for the rapid climate change from icehouse to greenhouse conditions in the aftermath of the Neoproterozoic“snowball Earth”event.展开更多
The attractions of cantilevers made of multiwalled carbon nanotubes(MWNTs) and secured on one end are studied in the non-uniform magnetic field of a permanent magnet. Under an optical microscope, the positions and t...The attractions of cantilevers made of multiwalled carbon nanotubes(MWNTs) and secured on one end are studied in the non-uniform magnetic field of a permanent magnet. Under an optical microscope, the positions and the corresponding deflections of the original cantilevers(with iron catalytic nanoparticles at the free end) and corresponding cut-off cantilevers(the free ends consisting of open ends of MWNTs) are studied. Both kinds of CNT cantilevers are found to be attracted by the magnet, and the point of application of force is proven to be at the tip of the cantilever. By measuring and comparing deflections between these two kinds of cantilevers, the magnetic moment at the open ends of the CNTs can be quantified.Due to the unexpectedly high value of the magnetic moment at the open ends of carbon nanotubes, it is called giant magnetic moment, and its possible mechanisms are proposed and discussed.展开更多
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency r...We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.展开更多
The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the prese...The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.展开更多
Adsorption and desorption of gold on the magnetic activated carbon (MAC) were investigated The adsorption rate of gold is higher than that of conventional coconut carbon in cyanide leach solution The loading gold can ...Adsorption and desorption of gold on the magnetic activated carbon (MAC) were investigated The adsorption rate of gold is higher than that of conventional coconut carbon in cyanide leach solution The loading gold can be easily desorbed as coconut carbon. Crushed fine magnetic carbon can be selected by a magnetic separator, It is suggested that the MAC can be used in carbon-in-pulp (CIP)process for increasing the recovery rate of gold展开更多
A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction...A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
基金ACKNOWLEDGMENTS This work was supported by Project of Fundamental Research the National Major Nanomaterials and Nanostructures (No.2005CB623603) and the National Natural Science Foundation of China (No.10674138).
文摘Carbon nanotubes were coated with a layer of nickel-cobalt-phosphorus (Ni-Co-P) alloy with different compositions of Ni/Co through electroless plating. The effects of the concentration ratio of Co^2+ to Ni^2+, bath temperature, and pH on deposition rate are discussed. The prepared carbon nanotubes covered with Ni-Co-P were characterized and analyzed by fieldemission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and a vibrating sample magnetometer. The results show that the deposition rate reached the maximum when the concentration ratio of Co^2+ to Ni^2+ is 1 and the pH is 9; the deposition rate increases with the increase of bath temperature. The measurements of the magnetic properties of the obtained carbon nanotubes covered with Ni-Co-P indicate that the magnetic properties greatly depend on the concentration ratio of Co^2+ to Ni^2+, and the magnetic saturation reaches the maximum value when the Co^2+ to Ni^2+ ratio is 1. In addition, there are two peaks in the coercivity curve at Co^2+ to Ni^2+ ratios of 1/2 and 4/1, while the two peaks in the magnetic conductivity curve are located at Co^2+ to Ni^2+ ratios of 1/4 and 4/1.
基金supported by the Fund of 863 High-Tech Research and Development Program of China and the Poten research project No. YA-2016-003
文摘Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorption,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometry(VSM).The evolution behaviors and transition mechanism of Fe3O4 during the preparation of MAC were investigated.The results show that prepared MAC with 6 wt%Fe3O4 addition having a specific surface area and mesopore ratio of 370 m^2·g^-1 and 55.7%,which meet the requirements of adsorption application and magnetic recovery.Highly dispersed iron-containing aggregates with the size of 0.1 lm in the MAC were observed.During the preparation of MAC,Fe3O4 could enhance the escape of volatiles during the carbonization.Fe3O4 could also accelerate burning off the carbon wall during activation,which leads to enlarging micropore size,then resulting in the generation of mesopore and macropore.As a result,a part of Fe3O4 converted into FeO,FeOOH,a-Fe,c-Fe,Fe2SiO4 and compound of Aluminum-iron-silicon.The prepared activated carbon,which was magnetized by both of residual Fe3O4,reduced a-Fe and c-Fe,can be easily separated from the original solution by external magnetic field.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
基金This project is financially supported by the Program for New Century Excellent Talents in Universities, Beijing Natural Science Foundation of China (No. 2073026).
文摘The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this article, the effects of oxygen and carbon on the properties and microstructure of the magnets have been studied. The results indicate that oxygen consumes the effective Sm content of the magnets and forms Sm2O3-the non-magnetism phase, which result in the deterioration of the magnetic properties. Besides, the magnetic properties decrease in evidence with increasing carbon content. The main factor that affects the magnetic properties is the deterioration of the microstructure of the magnets. The Sm(Co, Cu)5 phase decreases, whereas the cell size increases with the increase of the carbon content. When the carbon content is above 0.43 wt.%, the Sm(Co, Cu)5 phase is not enough to form a uniform cellular microstructure. Thus the magnetic properties disappear. ZrC is detected in the magnets by XRD when the carbon content is above 0.21 wt.%. ZrC also reduces the properties of the magnets.
基金supported by the National Natural Science Foundation of China,‘Study on the pathogenic effect of HO-1/CO in the delayed encephalopathy after acute CO poisoning’,(Grant No.81101024)
文摘Objective In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. Methods We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. Results Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. Conclusion The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.
基金supported by the National Natural Science Foundation of China(51272173,51002188)the National Basic Research Program of China(2010CB934703)Tianjin Municipal Science and Technology Commission(12ZCZDGX00800)
文摘Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.
基金supported by the National Natural Science Foundation of China (No20776150)the National High Technology Research and Development Program of China (No2008AA05Z308)
文摘Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.
基金supported by the Research Grant of the Phytochemistry Key Laboratory of Shaanxi Province(Grant No.13JS005)the Project of Baoji University of Arts and Sciences(Grant No.YK1417)the Project of Baoji Sciences and Technology Bureau(Grant No.2013R7-5)
文摘Magnetic multi-wall carbon nanotubes were prepared with wet chemical treatments and characterized by a transmission electron microscope (TEM) and X-ray diffraction (XRD). They were used as adsorbents for the removal of Cr(VI) in aqueous solutions. The effects of adsorbent dosage, the concentration of Cr(VI) in aqueous solution, temperature, and pH value on the removal efficiency were studied. Results showed that the adsorption capacity of the magnetic multi-wall carbon nanotubes increased with the initial Cr(VI) concentration, but decreased with the increase of adsorbent dosage. The adsorption amount increased with contact time. The adsorption kinetics were best represented by the pseudo second-order kinetic model, and the adsorption isotherms indicated that the Langmuir model better reflected the adsorption process. The ob- tained calculation results for the Gibbs free energy revealed that the adsorption was a spontaneous and endothermic process. The enthalpy deviation was 3.835 kJ.mol 1. The magnetic multi-wall carbon nanotubes showed significant potential for application in adsorption of heavy metal ions.
文摘AIM: To evaluate the effects of using CO2 as negative contrast agent in decreasing the overlapping on the pancreaticobiliary system from intestinal fluids.METHODS:We evaluated the magnetic resonance cholangiopancreatography(MRCP) images in 117 patients divided into two groups(group 1,without taking gas producing crystals to produce CO2,n=64;group 2,with CO2,n=53)in a 1.5T unit using MRCP sequence.Anatomic locations of intestinal fluids distribution,overlapping with common bile duct(CBD)and pancreatic duct(PD),were evaluated.RESULTS:In the group with CO2,the decrease in distribution of intestinal fluids was significant in the gastric antrum(P=0.001)and duodenal bulb(P<0.001),but not in the gastric fundus and body and in the second portion of the duodenum(P=1.000,P=0.171,and P=0.584 respectively).In the group with CO2,the decrease in overlapping with CBD was significant(P< 0.001),but the decrease in overlapping with PD was not (P=0.106).CONCLUSION:MRCP with carbon dioxide as negative contrast agent would decrease intestinal fluids in the gastric antrum and duodenal bulb,thereby decreasing overlapping with the CBD.
基金Funded by the the National Natural Science Foundation of China(No.51278086)the Program for New Century Excellent Talents in University by Ministry of Education of the People’s Republic of China(No.NCET-12-0084)+2 种基金Liaoning BaiQianWan Talents Program(No.2012921073)Dalian Plan Projects of Science and Technology(Nos.2012A13GX024 and 2013A16GX113)the Construction Safety and Environment State Key Laboratory Open Fund(No.201202)
文摘The dispersion effect of carbon nanofibers (CNFs) in aqueous solution and the mechanical properties, porosity, pore size distribution and microstructure of CNFs reinforced cement-based composites were investigated in this paper. To achieve effective dispersion of CNFs, a method utilizing ultrasonic processing and a commercially surfactant were employed. CNFs were incorporated to cementitious materials with the addition of 0.1 wt% and 0.2 wt% of cement with a water/cement ratio of 0.35. The mechanical properties of CNFs/ cement composites were analyzed, the porosity and pore size distribution were characterized by ^1H low field nuclear magnetic resonance (NMR), and the microstructure was observed by scanning electron microscopy (SEM). The results indicate that the optimum concentration ratio of MC to CNFs is 2:1 for dispersing in aqueous solution. Moreover, in the field of mechanical properties, CNFs can improve the flexural strength and compressive strength. The increased mechanical properties and the decreased porosity of the matrices correspond to the increasing CNFs content and CNFs act as bridges and networks across cracks and voids.
基金Supported by the Key Program of National Natural Science Foundation of China(20936003)the Foundation for Innovation Research Groups of the Natural Science Foundation of Hubei Province(2008CDA009)
文摘The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.
基金Project supported by the National Natural Science Foundation of China (Nos. 20490200 and 20176051), and the Project Based Per-sonnel Exchange Program with the China Scholarship Council and the German Academic Exchange Service
文摘Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.
基金supported by the National Natural Science Foundation of China(12272329)the Sichuan University Student Innovation and Entrepreneurship Training Program(S202110619066)+2 种基金the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)the Undergraduate Innovation Fund Project by Southwest University of Science and Technology(CX21-098)the NHC Key Laboratory of Nuclear Technology Medical Transformation(Mianyang Central Hospital)(21HYX019)。
文摘The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0208403 and 2016YFA0200403)the National Natural Science Foundation of China(Grant Nos.51472057,11874129,91323304,and 11674387)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040101)the Baotou Rare Earth Research and Development Centre,Chinese Academy of Sciences(Grant No.GZR 2018001)
文摘In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs.By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5 ± 9.8 μB(Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.
基金This work was supported by the National Natural Science Foundation(Grant No.40032010B)
文摘Magnetic susceptibility(MS)data were obtained from 11 sections of the Doushantuo(Edicaran)cap carbonate that directly overlies the Nantuo glacial diamictite in the southeastern margin of the Yangtze plat-form.The MS data revealed two regionally correlatable peaks at the bottom and top of the cap carbonate,sepa-rated by an interval of low values.The lower MS peak coincides with high percentage of insoluble siliciclastic residues that are compositionally identical to the matrix of the underlying diamictite,suggesting its origin con-trolled mainly by detrital components during the first phase of cap carbonate deposition at the end of the glacia-tion.The upper MS peak is associated with high clay content and iron sulfides,and can be interpreted as either derived from enhanced greenhouse weathering that could have brought more terrigenous components into the ocean,or the result of ocean anoxia at the late stage of cap carbonate deposition that could led to formation of abundant iron sulfides.The regionally consistent MS curves from the cap carbonates provided the first geo-physical record for the rapid climate change from icehouse to greenhouse conditions in the aftermath of the Neoproterozoic“snowball Earth”event.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774032 and 51472057)the Instrument Developing Project of the Chinese Academy of Sciences(Grant No.Y2010031)
文摘The attractions of cantilevers made of multiwalled carbon nanotubes(MWNTs) and secured on one end are studied in the non-uniform magnetic field of a permanent magnet. Under an optical microscope, the positions and the corresponding deflections of the original cantilevers(with iron catalytic nanoparticles at the free end) and corresponding cut-off cantilevers(the free ends consisting of open ends of MWNTs) are studied. Both kinds of CNT cantilevers are found to be attracted by the magnet, and the point of application of force is proven to be at the tip of the cantilever. By measuring and comparing deflections between these two kinds of cantilevers, the magnetic moment at the open ends of the CNTs can be quantified.Due to the unexpectedly high value of the magnetic moment at the open ends of carbon nanotubes, it is called giant magnetic moment, and its possible mechanisms are proposed and discussed.
基金Project supported by the Science Research Program of Hunan Province, China (Grant No. 2010FJ4092)the National Natural Science Foundation of China (Grant No. 11075073)
文摘We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.
基金support by the National Natural Science Foundation of China (No. 20776150)the National Hi-Tech Research and Development Program of China(No. 2008AA05Z308)the Special Fund for Basic Scientific Research of Central Colleges (No. 2009QH15)
文摘The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.
文摘Adsorption and desorption of gold on the magnetic activated carbon (MAC) were investigated The adsorption rate of gold is higher than that of conventional coconut carbon in cyanide leach solution The loading gold can be easily desorbed as coconut carbon. Crushed fine magnetic carbon can be selected by a magnetic separator, It is suggested that the MAC can be used in carbon-in-pulp (CIP)process for increasing the recovery rate of gold
基金financial support:The National Natural Science Foundation of China(21922814,21921005,21676273,21961160745,U1507203,31961133019)the Youth Innovation Promotion Association,CAS(Grant Nos.2016043)+1 种基金Beijing Natural Science Foundation(20194086)China Petroleum Enterprise Cooperation Project(PRIKY17094)。
文摘A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).