期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
真空加热和电子束辐照改性处理g-C_3N_4光催化剂 被引量:5
1
作者 张云龙 浦娴娟 +3 位作者 程伶俐 蒋永 丁国际 焦正 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期452-463,共12页
将真空加热与电子束辐照两种改性后处理过程引入非金属光催化剂类石墨相氮化碳(graphitic carbon nitride,g-C_3N_4)的性能改善中.这两种后处理方法都能有效地改善g-C_3N_4的光催化特性,不过电子束辐照方法更具有破坏性,会在一定程度上... 将真空加热与电子束辐照两种改性后处理过程引入非金属光催化剂类石墨相氮化碳(graphitic carbon nitride,g-C_3N_4)的性能改善中.这两种后处理方法都能有效地改善g-C_3N_4的光催化特性,不过电子束辐照方法更具有破坏性,会在一定程度上改变g-C_3N_4光催化剂本身的化学键和能带结构.根据后处理的实施参数,真空热处理(6.7±0.7 Pa,4 d,200?C)可以将原始的g-C_3N_4可见光光催化性能提高2.5倍,而电子束辐照(800 kGy,1.8 MeV,8 mA·s^(-1))可以提高至4.5倍.光催化循环实验显示了改性后光催化剂的循环稳定性,也保证了这两种后处理方式的进一步实施. 展开更多
关键词 类石墨相氮化碳(graphitic carbon nitride g-c3n4) 真空加热 电子束辐照 后处理 光催化剂
下载PDF
Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs 被引量:10
2
作者 Aiwu Wang Chundong Wang +2 位作者 Li Fu Winnie Wong-Ng Yucheng Lan 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期108-128,共21页
The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of env... The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included. 展开更多
关键词 Graphitic carbon nitrideg-c3n4 CATALYSIS SEnSInG IMAGInG LED
下载PDF
Efficient Photoelectrochemical Water Splitting by g-C_3N_4/TiO_2 Nanotube Array Heterostructures 被引量:7
3
作者 Changhai Liu Fang Wang +4 位作者 Jin Zhang Ke Wang Yangyang Qiu Qian Liang Zhidong Chen 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期247-259,共13页
Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil i... Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20%deionized water. Subsequently, g-C_3N_4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C_3N_4 was successfully decorated on the TNTAs and the g-C_3N_4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications. 展开更多
关键词 TiO2 nanotube arrays Graphitic carbon nitrideg-c3n4 HETEROJUnCTIOn PHOTOELECTROCHEMICAL Water splitting
下载PDF
DFT‑Guided Design and Fabrication of Carbon‑Nitride‑Based Materials for Energy Storage Devices:A Review 被引量:4
4
作者 David Adekoya Shangshu Qian +4 位作者 Xingxing Gu William Wen Dongsheng Li Jianmin Ma Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期245-288,共44页
Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In t... Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In this review,we provide a comprehensive review on these materials properties,theoretical advantages,the synthesis and modification strategies of different carbon nitride-based materials(CNBMs)and their application in existing and emerging rechargeable battery systems,such as lithium-ion batteries,sodium and potassium-ion batteries,lithium sulfur batteries,lithium oxygen batteries,lithium metal batteries,zinc-ion batteries,and solid-state batteries.The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage,i.e.,facilitate the application of first-principle studies and density functional theory for electrode material design,synthesis,and characterization of different CNBMs for the aforementioned rechargeable batteries.At last,we conclude with the challenges,and prospects of CNBMs,and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries. 展开更多
关键词 carbon nitrides Metal-ion batteries Density functional theory g-c3n4 AnODE
下载PDF
Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4 被引量:13
5
作者 Qian Li Songcan Wang +5 位作者 Zhuxing Sun Qijun Tang Yiqiu Liu Lianzhou Wang Haiqiang Wang Zhongbiao Wu 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2749-2759,共11页
Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its app... Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its application in CO2 photocatalytic reduction.In this work,carbon quantum dot(CQD)decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method.The incorporated CQDs not only facilitate charge transfer and separation,but also provide alternative CO2 adsorption and activation sites.Further,the oxygen-atom-doped CN(OCN),in which oxygen doping is accompanied by the formation of nitrogen defects,proves to be a sustainable H^+ provider by facilitating the water dissociation and oxidation half-reactions.Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials,the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x(x represents the volume ratio of laboratory-used H2O2(30 wt.%)in the mixed solution)is dramatically improved by 11 times at least.The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity. 展开更多
关键词 photocalytic CO2 reduction graphitic carbon nitride(g-c3n4) carbon quantum dot oxygen doping
原文传递
Fluorescent light enhanced graphitic carbon nitride/ceria with ultralow-content platinum catalyst for oxidative decomposition of formaldehyde at ambient temperature
6
作者 Gang Huang Zhi-Hua Xu +2 位作者 Ting-Ting Luo Zhao-Xiong Yan Meng Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3135-3146,共12页
The complete decomposition of formaldehyde(HCHO) at ambient temperature is the most potential strategy for HCHO elimination from indoor environment.Herein,extra low content of Pt nanoparticles(0.025 wt%)supported on w... The complete decomposition of formaldehyde(HCHO) at ambient temperature is the most potential strategy for HCHO elimination from indoor environment.Herein,extra low content of Pt nanoparticles(0.025 wt%)supported on water-solubility carbon nitride/ceria(Pt/gC_(3)N_(4)@CeO_(2)) was prepared for gaseous HCHO removal at ambient temperature in a simulated indoor environment.Fluorescent light(8 W) illumination could visibly boost the complete decomposition of HCHO into CO_(2) over Pt/gC_(3)N_(4)@CeO_(2).The cooperative effect in the distinct heterostructure and plenty of surface reactive oxygen species contribute primarily to the enhanced catalytic performance of Pt/g-C_(3)N_(4)@CeO_(2).Moreover,the possible mechanism of HCHO oxidation over Pt/g-C_(3)N_(4)@CeO_(2) assisted by the fluorescent light irradiation was proposed based on the physicochemical and optical characterization as well as the result of in situ diffuse reflectance infrared Fourier transform spectra.This work might shed some light on the potential application of the versatile catalysts for ambient-temperature catalytic decomposition of HCHO by making full use of the indoor energies. 展开更多
关键词 Graphitic carbon nitride(g-c3n4) CeO_(2) Catalytic oxidation Formaldehyde decomposition Ambient temperature Fluorescent light irradiation
原文传递
Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production 被引量:17
7
作者 Chao Zhou Run Shi +3 位作者 Lu Shang Li-Zhu Wu Chen-Ho Tung Tierui Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3462-3468,共7页
A template-free hydrothermal-assisted thermal polymerization method has been developed for the large-scale synthesis of one-dimensional (1D) graphitic carbon nitride (g-C3N4) microtubes. The g-C3N4 microtubes were... A template-free hydrothermal-assisted thermal polymerization method has been developed for the large-scale synthesis of one-dimensional (1D) graphitic carbon nitride (g-C3N4) microtubes. The g-C3N4 microtubes were obtained by simple thermal polymerization of melamine-cyanuric acid complex microrods under N2 atmosphere, which were synthesized by hydrothermal treatment of melamine solution at 180℃ for 24 h. The as-obtained g-C3N4 microtubes exhibited a large surface area and a unique one-dimensional tubular structure, which provided abundant active sites for proton reduction and also facilitated the electron transfer processes. As such, the g-C3N4 microtubes showed enhanced photocatalytic H2 production activity in lactic acid aqueous solutions under visible light irradiation (A 〉 420 nm), which was - 3.1 times higher than that of bulk g-C3N4 prepared by direct thermal polymerization of the melamine precursor under the same calcination conditions. 展开更多
关键词 graphitic carbon nitrideg-c3n4)microtubes PHOTOCATALYTIC water splitting visible light response
原文传递
Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles 被引量:8
8
作者 Wei Bing Zhaowei Chen +4 位作者 Hanjun Sun Peng Shi Nao Gao Jinsong Ren Xiaogang Qu 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1648-1658,共11页
Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, ... Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, since the noble metal NPs act as excellent electron acceptors which inhibit the quick recombination of the photoexcited electron-hole pairs and thereby enhance the generation of reactive oxygen species (ROS). Herein, a highly effective platform, graphitic carbon nitride (g-C3N4) nanosheets with embedded Ag nanopartides (Ag/g-C3N4), was synthesized by a facile route. Under visible light irradiation, the ROS production of Ag/g-C3N4 nanohybrids was greatly improved compared with pristine g-C3N4 nanosheets, and moreover, the nanohybrids showed enhanced antibacterial efficacy and ability to disperse bacterial biofilms. We demonstrate for the first time that the Ag/g-C3N4 nanohybrids are efficient bactericidal agents under visible light irradiation, and can also provide a new way for biofilm elimination. The enhanced antibacterial properties and biofilm-disrupting ability of Ag/g-C3N4 nanohybrids may offer many biomedical applications. 展开更多
关键词 graphitic carbon nitride Ag/g-c3n4 nanohybrids antibacterial platform reactive oxygen species(ROS) BIOFILM
原文传递
Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries 被引量:6
9
作者 Meng Wang Qinghua Liang +5 位作者 Junwei Han Ying Tao Donghai Liu Chen Zhang Wei Lv Quan-Hong Yang 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3480-3489,共10页
The practical application of lithium-sulfur batteries with a high energy density has been plagued by the poor cycling stability of the sulfur cathode, which is a result of the insulating nature of sulfur and the disso... The practical application of lithium-sulfur batteries with a high energy density has been plagued by the poor cycling stability of the sulfur cathode, which is a result of the insulating nature of sulfur and the dissolution of polysulfides. Much work has been done to construct nanostructured or doped carbon as a porous or polar host for promising sulfur cathodes, although restricting the polysulfide shuttle effect by improving the redox reaction kinetics is more attractive. Herein, we present a well-designed strategy by introducing graphitic carbon nitride (g-C3N4) into a three-dimensional hierarchical porous graphene assembly to achieve a synergistic combination of confinement and catalyzation of polysulfides. The porous g-CBN4 nanosheets in situ formed inside the graphene network afford a highly accessible surface to catalyze the transformation of polysulfides, and the hierarchical porous graphene-assembled carbon can function as a conductive network and provide appropriate space for g-C3N4 catalysis in the sulfur cathode. Thus, this hybrid can effectively improve sulfur utilization and block the dissolution of polysulfides, achieving excellent cycling performance for sulfur cathodes in lithium-sulfur batteries. 展开更多
关键词 lithium-sulfur batteries lithium polysulfide graphitic carbon nitrideg-c3n4 GRAPHEnE catalytic conversion
原文传递
Amine-rich carbon nitride nanoparticles:Synthesis,covalent functionalization with proteins and application in a fluorescence quenching assay 被引量:1
10
作者 Gabriele Capilli Simone Cavalera +4 位作者 Laura Anfossi Cristina Giovannoli Marco Minella Claudio Baggiani Claudio Minero 《Nano Research》 SCIE EI CAS CSCD 2019年第8期1862-1870,共9页
Carbon nitride nanoparticles (CNNPs) have been employed as fluorescent sensing tools owing to their unique features, e.g. low cost production, high stability in water and high photoluminescence quantum yield. Here, an... Carbon nitride nanoparticles (CNNPs) have been employed as fluorescent sensing tools owing to their unique features, e.g. low cost production, high stability in water and high photoluminescence quantum yield. Here, an easy and versatile synthetic approach was exploited to design fluorescent nanoparticles with surface functionalities suitable for covalent binding to bioligands. High hydrophilic, brightly fluorescent CNNPs, rich of superficial amines, were obtained from the thermal condensation of urea and lysine (CNNP^Lys) and by tuning the precursor ratio and the heating time. Structure and size of the functionalized nanoparticles were characterized through infrared (IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Their optical properties were studied by ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. The superficial primary amino groups, furnished by the lysine co-precursor, enabled for covalently linking CNNP^Lys to model proteins. The CNNP^Lys-protein conjugates excited under UV irradiation emit in the 400-450 nm visible range (quantum yield 24%). The applicability of CNNP^Lys as novel fluorescent probes was demonstrated by a fluorescence quenching assay, in which gold nanoparticles (GNPs) were attached to Staphylococcal protein A and employed to quench the CNNP^Lys fluorescence by Forster resonant energy transfer (FRET). The quenching occurred upon formation of the specific binding between the GNP-linked protein A and CNNP^Lys-tagged immunoglobulins, while the inhibition of the binding resulted in the recovery of CNNP^Lys luminescence. The synthetic strategy, based on combining a "conjugated polymer"-forming unit (urea) and a co-precursor able to provide the desired functional group (lysine), allows designing innovative materials for the development of new generation fluorescence biosensors in which easily functionalized fluorophores are needed. 展开更多
关键词 FLUORESCEnT probe carbon nitride nAnOPARTICLES quenching ASSAY FLUORESCEnT materials g-c3n4 FORSTER resonant energy transfer (FRET)
原文传递
Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence,Cataluminescence and Electrochemiluminescence 被引量:1
11
作者 Hongjie Song Lichun Zhang +1 位作者 Yingying Su Yi Lv 《Journal of Analysis and Testing》 EI 2017年第4期274-290,共17页
Graphitic carbon nitride(g-C3N4)has attracted considerable attention due to its special structure and properties,such as its good chemical and thermal stability under ambient conditions,low cost and non-toxicity,and f... Graphitic carbon nitride(g-C3N4)has attracted considerable attention due to its special structure and properties,such as its good chemical and thermal stability under ambient conditions,low cost and non-toxicity,and facile synthesis.Recently,g-C3N4-based sensors have been demonstrated to be of high interests in the areas of sensing due to the unique optical,electronic and catalytic properties of g-C3N4.This review focuses on the most salient advances in luminescent sensors based on g-C3N4,chemiluminescence,cataluminescence and electrochemiluminescence methods are discussed.This review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing two-dimensional(2D)nanomaterial-assisted luminescent sensors. 展开更多
关键词 Graphitic carbon nitride(g-c3n4) Chemiluminescence(CL) Cataluminescence(CTL) Electrochemiluminescence(ECL) Sensors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部