期刊文献+
共找到767篇文章
< 1 2 39 >
每页显示 20 50 100
Special epoxy silicone adhesive for inertial confinement fusion experiment 被引量:3
1
作者 李芝华 李波 郑子樵 《Journal of Central South University of Technology》 EI 2007年第2期153-156,共4页
The effects of toughener and coupling agent on special epoxy silicone adhesive were discussed by researching the surface morphology characters, thermal properties and shear strength of the adhesive. The results indica... The effects of toughener and coupling agent on special epoxy silicone adhesive were discussed by researching the surface morphology characters, thermal properties and shear strength of the adhesive. The results indicate that silicone coupling agent (KH-550) can improve the shear strength of the epoxy silicone adhesive effectively. The mass fraction of the toughener in the epoxy silicone adhesive plays an important role in its properties. When the mass fraction of the toughener is less than 14%, the shear strength of the adhesive is low. When the mass fraction of the toughener is over 33%, thermal properties and shear strength of the adhesive decrease with the increasing of the toughener. The mass fraction of toughener of 25% results in good integral properties of the epoxy silicone adhesive. The morphologic analysis indicates that the micro-phase separation exists in the epoxy molecular chain and the silicone molecular chain of the epoxy silicone adhesive. 展开更多
关键词 inertial confinement fusion experiment epoxy silicone toughener coupling agent micro-phase separation
下载PDF
Optimization of laser illumination configuration for directly driven inertial confinement fusion 被引量:2
2
作者 Masakatsu Murakami Daiki Nishi 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第2期55-68,共14页
Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretica... Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretical models are reviewed in terms of the number of laser beams,system imperfection,and laser beam patterns.Utilizing a self-organizing system of charged particles on a sphere,a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams.As a result,such new configurations as“M48”and“M60”are found to show substantially higher illumination uniformity than any other existing direct drive systems.A new polar direct-drive scheme is proposed with the laser axes keeping off the target center,which can be applied to laser configurations designed for indirectly driven inertial fusion. 展开更多
关键词 Analytical model Laser illumination design Polar direct drive inertial confinement fusion
下载PDF
Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility 被引量:1
3
作者 王峰 彭晓世 +2 位作者 康洞国 刘慎业 徐涛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期401-405,共5页
A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fu... A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of - 30 ps at the Shen Guang-Ⅲ (SG-Ⅲ) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion. 展开更多
关键词 inertial confinement fusion Rayleigh-Taylor growth neutron fusion reaction IMPLOSION
下载PDF
Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities 被引量:1
4
作者 Yunsong DONG Dongguo KANG +19 位作者 Wei JIANG Zhicheng LIU Zhongjing CHEN Xing ZHANG Xin LI Chuankui SUN Chuansheng YIN Jianjun DONG Zhiwen YANG Yudong PU Ji YAN Bo YU Tianxuan HUANG Wenyong MIAO Zhensheng DAI Fengjun GE Dong YANG Feng WANG Jiamin YANG Shaoen JIANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期20-26,共7页
Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study... Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study the x-ray images of hot-spot self-emission,indicating asymmetry integrated over the entire drive pulse.It is shown that the x-ray imaging photon energy should be higher to avoid the influence of the remaining shell.The contour level(percentage of the maximum emission intensity)and spatial resolution should be as low as possible,optimally less than 20%and 3μm,for characterization of higher-mode signatures such as Ps-P12 by x-ray self-emission images.On the contrary,signatures of lower-mode such as P2 remain clear at all contour levels and spatial resolutions.These key results can help determine the optimal diagnostics,laser,and target parameters for implosion experiments.Recent typical hot-spot asymmetry measurements and applications on the Shenguang 100 kJ class laser facility are also reported. 展开更多
关键词 inertial confinement fusion IMPLOSION x-ray self-emission HOT-SPOT asymmetry
下载PDF
An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
5
作者 赵宗清 何卫华 +4 位作者 王剑 郝轶丹 曹磊峰 谷渝秋 张保汉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期281-286,共6页
In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson-Lucy (RL) method has a strong ability to deblur the i... In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson-Lucy (RL) method has a strong ability to deblur the image where the noise follows the Poisson distribution. However, it always suffers from over-fitting and noise amplification, especially when the signal-to-noise ratio of image is relatively low. In this paper, we propose an improved deconvolution method for X-ray coded imaging. We model the image data as a set of independent Gaussian distributions and derive the iterative solution with a maximum-likelihood scheme. The experimental results on X-ray coded imaging data demonstrate that this method is superior to the RL method in terms of anti-overfitting and noise suppression. 展开更多
关键词 inertial confinement fusion coded imaging DECONVOLUTION Gaussian distribution MAXIMUM-LIKELIHOOD
下载PDF
Effects of Atomic Mixing in Inertial Confinement Fusion by Multifluid Interpenetration Mix Model
6
作者 GU Jian-Fa YE Wen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期1102-1106,共5页
The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that... The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data. 展开更多
关键词 multifluid interpenetration mix model atomic mixing inertial confinement fusion
下载PDF
Implosion Plasma Driven Fusion Pellet of Inertial Confinement(A Short Memorandum)
7
作者 Rahele Zadfathollah Seyed Kamal Mousavi Balgehshiri +2 位作者 Ali Zamani Paydar Masoud J.Moghaddam Bahman Zohuri 《Journal of Energy and Power Engineering》 2023年第1期15-26,共12页
The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process... The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response. 展开更多
关键词 Plasma fusion plasma driven fusion magnetic reconnection TOKAMAK magnetic confinement fusion ICF
下载PDF
Multibeam laser-plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion 被引量:1
8
作者 G.Cristoforetti P.Koester +20 位作者 S.Atzeni D.Batani S.Fujioka Y.Hironaka S.Hüller T.Idesaka K.Katagiri K.Kawasaki R.Kodama D.Mancelli Ph.Nicolai N.Ozaki A.Schiavi K.Shigemori R.Takizawa T.Tamagawa D.Tanaka A.Tentori Y.Umeda A.Yogo L.A.Gizzi 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser... Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately 3×10^(15)W/cm^(2).Experimental data suggest that high-energy electrons,with temperatures of 20–50 keV and conversion efficiencies ofη<1%,were mainly produced by the damping of electron plasma waves driven by two-plasmon decay(TPD).Stimulated Raman scattering(SRS)is observed in a near-threshold growth regime,producing a reflectivity of approximately 0.01%,and is well described by an analytical model accounting for the convective growth in independent speckles.The experiment reveals that both TPD and SRS are collectively driven by multiple beams,resulting in a more vigorous growth than that driven by single-beam laser intensity. 展开更多
关键词 inertial confinement fusion laser plasma interaction parametric instabilities
原文传递
Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation
9
作者 Guangzhou HAO Jianqiang XU +2 位作者 Youwen SUN Zhibin GUO Organizing Committee of the 11th Conference on Magnetic Confined Fusion Theory and Simulation 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期1-7,共7页
This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFT... This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented. 展开更多
关键词 magnetic confined fusion(MCF) theory and simulation modeling TOKAMAK
下载PDF
Magnetic confinement fusion: a brief review 被引量:7
10
作者 Chuanjun HUANG Laifeng LI 《Frontiers in Energy》 SCIE CSCD 2018年第2期305-313,共9页
Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonst... Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasmafacing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source. 展开更多
关键词 fusion energy magnetic confinement TOKAMAK structural material superconducting magnet
原文传递
Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion 被引量:5
11
作者 S.Weber C.Riconda 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第1期51-63,共13页
The role of the coronal electron plasma temperature for shock-ignition conditions is analysed with respect to the dominant parametric processes: stimulated Brillouin scattering, stimulated Raman scattering, two-plasmo... The role of the coronal electron plasma temperature for shock-ignition conditions is analysed with respect to the dominant parametric processes: stimulated Brillouin scattering, stimulated Raman scattering, two-plasmon decay(TPD), Langmuir decay instability(LDI) and cavitation. TPD instability and cavitation are sensitive to the electron temperature. At the same time the reflectivity and high-energy electron production are strongly affected. For low plasma temperatures the LDI plays a dominant role in the TPD saturation. An understanding of laser–plasma interaction in the context of shock ignition is an important issue due to the localization of energy deposition by collective effects and hot electron production.This in turn can have consequences for the compression phase and the resulting gain factor of the implosion phase. 展开更多
关键词 inertial confinement fusion shock IGNITION laser–plasma interaction PARAMETRIC INSTABILITIES
原文传递
Production of thick-walled hollow glass microspheres for inertial confinement fusion targets by sol-gel technology 被引量:6
12
作者 GAO Cong QI XiaoBo +4 位作者 WEI Sheng ZHANG ZhanWen LI Bo SHI Tao CHU QiaoMei 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第9期2377-2385,共9页
To fabricate thick-walled hollow glass microspheres (HGMs) for inertial confinement fusion (ICF) targets by sol-gel technology, we investigated the effects of glass composition, blowing agent, refining temperature... To fabricate thick-walled hollow glass microspheres (HGMs) for inertial confinement fusion (ICF) targets by sol-gel technology, we investigated the effects of glass composition, blowing agent, refining temperature, pressure and composition of furnace atmosphere on the wall thickness of HGMs by numerical simulation and experiments. The results showed that the residence times of the thick-walled HGMs in the encapsulating and refining phases decreased with the increase of wall thickness of HGMs. As a response to this challenge, glass composition must be optimized with the object of high surface tension and low viscosity at refining temperature, and the blowing agents with high decomposition temperature should be used, furthermore the concentration of blowing agents in gel particles must also be precisely controlled. The higher volume fraction of argon gas in the furnace atmosphere, the thicker the wall of HGMs. Due to the limited operating range of furnace atmosphere pressure, changing furnace atmosphere pressure could not significantly increase the wall thickness of HGMs. Although increasing refin- ing temperature can improve the yield of high quality HGMs, a higher furnace atmosphere temperature may lead to a decrease in the wall thickness of HGMs. When the volume fraction of argon gas in the furnace atmosphere ranged from 80% to 95%, the furnace atmosphere pressure ranged from 1.0×l0^5 Pa to 1.25×105 Pa, and the refining temperature ranged from 1600℃ to 1800℃, we produced thick-walled (5-10 ktrn) HGMs with good sphericity, wall thickness uniformity and surface finish. However, the yield of high quality HGMs needs to be further improved. The compressive strength, tensile strength and permeation coefficient to deuterium gas of thick-walled HGMs at ambient temperature decreased with increase of the wall thickness. 展开更多
关键词 hollow glass microspherd dried-gel method inertial confinement fusion target fabrication
原文传递
Raman-Brillouin interplay for inertial confinement fusion relevant laser-plasma interaction 被引量:2
13
作者 C.Riconda S.Weber 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第3期23-38,共16页
The co-existence of the Raman and Brillouin backscattering instability is an important issue for inertial confinement fusion. The present paper presents extensive one-dimensional(1D) particle-in-cell(PIC) simulations ... The co-existence of the Raman and Brillouin backscattering instability is an important issue for inertial confinement fusion. The present paper presents extensive one-dimensional(1D) particle-in-cell(PIC) simulations for a wide range of parameters extending and complementing previous findings. PIC simulations show that the scenario of reflectivity evolution and saturation is very sensitive to the temperatures, intensities, size of plasma and boundary conditions employed. The Langmuir decay instability is observed for rather small k_(epw)λ_D but has no influence on the saturation of Brillouin backscattering, although there is a clear correlation of Langmuir decay instability modes and ion-fractional decay for certain parameter ranges. Raman backscattering appears at any intensity and temperature but is only a transient phenomenon. In several configurations forward as well as backward Raman scattering is observed. For the intensities considered, I λ_o^2 above 10^(15) W μm^2/cm^2, Raman is always of bursty nature. A particular setup allows the simulation of multi-speckle aspects in which case it is found that Raman is self-limiting due to strong modifications of the distribution function. Kinetic effects are of prime importance for Raman backscattering at high temperatures. No unique scenario for the saturation of Raman scattering or Raman–Brillouin competition does exist. The main effect in the considered parameter range is pump depletion because of large Brillouin backscattering. However, in the low k_(epw)λ_D regime the presence of ion-acoustic waves due to the Langmuir decay instability from the Raman created electron plasma waves can seed the ion-fractional decay and affect the Brillouin saturation. 展开更多
关键词 Brillouin backscattering inertial confinement fusion kinetic effects laser-plasma interaction parametric instabilities particle-in-cell simulations Raman backscattering
原文传递
Optimal laser intensity profiles for a uniform target illumination in direct-drive inertial confinement fusion 被引量:1
14
作者 Mauro Temporal Benoit Canaud +1 位作者 Warren J.Garbett Rafael Ramis 《High Power Laser Science and Engineering》 SCIE CAS 2014年第4期62-67,共6页
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studi... A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NBof laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser Mega Joule(LMJ) are described. 展开更多
关键词 direct DRIVE inertial confinement fusion laser system
原文传递
Developing one-dimensional implosions for inertial confinement fusion science
15
作者 J.L.Kline S.A.Yi +35 位作者 A.N.Simakov R.E.Olson D.C.Wilson G.A.Kyrala T.S.Perry S.H.Batha E.L.Dewald J.E.Ralph D.J.Strozzi A.G.MacPhee D.A.Callahan D.Hinkel O.A.Hurricane R.J.Leeper A.B.Zylstra R.R.Peterson B.M.Haines L.Yin P.A.Bradley R.C.Shah T.Braun J.Biener B.J.Kozioziemski J.D.Sater M.M.Biener A.V.Hamza A.Nikroo L.F.Berzak Hopkins D.Ho S.LePape N.B.Meezan D.S.Montgomery W.S.Daughton E.C.Merritt T.Cardenas E.S.Dodd 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第4期1-7,共7页
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting fea... Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains.To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional(1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However,double shell targets have a different set of trade-off versus advantages. Details for each of these approaches are described. 展开更多
关键词 beryllium capsules double shells inertial confinement fusion liquid layers
原文传递
Studying Validity of Single-Fluid Model in Inertial Confinement Fusion
16
作者 谷建法 范证锋 +3 位作者 戴振生 叶文华 裴文兵 朱少平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第3期370-376,共7页
The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and inte... The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. 展开更多
关键词 multi-fluid model interpenetration mixing inertial confinement fusion
原文传递
Relativistic Heavy Ion Collider and the Large Hadron Collider for Heavy Ion Fusion
17
作者 Ardeshir Irani 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期825-827,共3页
Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may no... Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider. 展开更多
关键词 Heavy Ion fusion Relativistic Heavy Ion Collider Large Hadron Collider inertial confinement fusion National Ignition Facility
下载PDF
Induction System for a Fusion Reactor: Quantum Mechanics Chained up
18
作者 Friedrich Björn Grimm 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期158-166,共9页
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn... In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production. 展开更多
关键词 fusion Reactor Plasma confinement Quantum Mechanics Clean Energy
下载PDF
Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)
19
作者 王志斌 仇志勇 +1 位作者 王璐 陈伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期1-11,共11页
This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.Th... This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper. 展开更多
关键词 CMCFTS magnetically confined fusion THEORY simulation conference report
下载PDF
MY CONTRIBUTIONS TO NUCLEAR FUSION RESEARCH UNDER INER- TIAL CONFINEMENT
20
作者 Wang Naiyan(China Institute of Atomic Energy) 《Bulletin of the Chinese Academy of Sciences》 1996年第1期66-66,共1页
In 1956, I graduated as a major in technical physics from Beijing University and was assigned to work in neutron physics during my early years after graduation. Several research achievements were obtained while I was ... In 1956, I graduated as a major in technical physics from Beijing University and was assigned to work in neutron physics during my early years after graduation. Several research achievements were obtained while I was working at the Joint Institute of Nuclear Physics of Dubna in suburban Moscow. In the mid-1960s, I was engaged in radioactive measurement for many years in nuclear detonation, and led and participated in H projects of 展开更多
关键词 MY CONTRIBUTIONS TO NUCLEAR fusion RESEARCH UNDER INER TIAL confinement
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部