Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at va...Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.展开更多
目前,磁谐振式无线电能传输(Magnetic coupling resonance-wireless power transmission,MCR-WPT)的研究主要集中于静止状态下的双发射单负载和三发射单负载系统。本文对双发射多负载低速转动系统进行了研究,通过建立双发射多负载系统...目前,磁谐振式无线电能传输(Magnetic coupling resonance-wireless power transmission,MCR-WPT)的研究主要集中于静止状态下的双发射单负载和三发射单负载系统。本文对双发射多负载低速转动系统进行了研究,通过建立双发射多负载系统的理论模型,结合COMSOL软件进行仿真,并搭建接收端转动的二维全向磁谐振式无线电能传输实验平台,验证了正交发射线圈不同相位差、不同接收线圈数量及线圈相对位置改变对转动系统能量传输效率的影响。结果表明,当正交双发射线圈存在90°相位差时,系统在接收端线圈固定距离内能够维持稳定的磁场传输特性,随着负载线圈数量的增加,系统的总传输效率波动幅度有所改变,当负载为4个时波动最小。展开更多
针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-...针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-WPT)系统结构,通过建立含分数阶电容的串联谐振式双向无线电能传输系统的电路模型,推导了其传输功率和效率关系.仿真实验结果表明,与整数阶串联谐振系统相比,系统的输出功率提升了7.82%,传输效率提升了0.58个百分点.展开更多
文章针对基于窄带物联网(Narrow Band Internet of Things,NB-IoT)技术的智能无线电源传输系统,设计一种高效稳定的电能无线传输方案,以满足物联网应用需求。通过构建包含NB-IoT通信模块、无线电源传输模块以及智能控制模块的整体架构,...文章针对基于窄带物联网(Narrow Band Internet of Things,NB-IoT)技术的智能无线电源传输系统,设计一种高效稳定的电能无线传输方案,以满足物联网应用需求。通过构建包含NB-IoT通信模块、无线电源传输模块以及智能控制模块的整体架构,实现电能的远程无线输送与智能管理。实验结果显示,在距离为0.1 m时,系统的传输效率最高可达88.5%,在距离为0.3 m、负载为60 W时,系统的传输效率仍能达到71.0%。本研究为构建可靠高效的无线电源传输系统提供了理论基础和技术支持。展开更多
文摘Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.
文摘目前,磁谐振式无线电能传输(Magnetic coupling resonance-wireless power transmission,MCR-WPT)的研究主要集中于静止状态下的双发射单负载和三发射单负载系统。本文对双发射多负载低速转动系统进行了研究,通过建立双发射多负载系统的理论模型,结合COMSOL软件进行仿真,并搭建接收端转动的二维全向磁谐振式无线电能传输实验平台,验证了正交发射线圈不同相位差、不同接收线圈数量及线圈相对位置改变对转动系统能量传输效率的影响。结果表明,当正交双发射线圈存在90°相位差时,系统在接收端线圈固定距离内能够维持稳定的磁场传输特性,随着负载线圈数量的增加,系统的总传输效率波动幅度有所改变,当负载为4个时波动最小。
文摘针对谐振式无线电能传输系统中分数阶电感、电容元件的仿真实现困难的问题,采用等效阻抗实现分数阶电容的等效.基于分数阶电容的阻抗特性,给出了一种分数阶RLC_(α)串联谐振双向无线电能传输(bidirectional wireless power transfer,BD-WPT)系统结构,通过建立含分数阶电容的串联谐振式双向无线电能传输系统的电路模型,推导了其传输功率和效率关系.仿真实验结果表明,与整数阶串联谐振系统相比,系统的输出功率提升了7.82%,传输效率提升了0.58个百分点.
文摘文章针对基于窄带物联网(Narrow Band Internet of Things,NB-IoT)技术的智能无线电源传输系统,设计一种高效稳定的电能无线传输方案,以满足物联网应用需求。通过构建包含NB-IoT通信模块、无线电源传输模块以及智能控制模块的整体架构,实现电能的远程无线输送与智能管理。实验结果显示,在距离为0.1 m时,系统的传输效率最高可达88.5%,在距离为0.3 m、负载为60 W时,系统的传输效率仍能达到71.0%。本研究为构建可靠高效的无线电源传输系统提供了理论基础和技术支持。