期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Trace determination and characterization of ginsenosides in rat plasma through magnetic dispersive solid-phase extraction based on core-shell polydopamine-coated magnetic nanoparticles 被引量:2
1
作者 Ningning Zhao Shu Liu +3 位作者 Junpeng Xing Zifeng Pi Fengrui Song Zhiqiang Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第1期86-95,共10页
Enrichment of trace bioactive constituents and metabolites from complex biological samples is challenging.This study presented a one-pot synthesis of magnetic polydopamine nanoparticles(Fe3O4@-SiO2@PDA NPs)with multip... Enrichment of trace bioactive constituents and metabolites from complex biological samples is challenging.This study presented a one-pot synthesis of magnetic polydopamine nanoparticles(Fe3O4@-SiO2@PDA NPs)with multiple recognition sites for the magnetic dispersive solid-phase extraction(MDSPE)of ginsenosides from rat plasma treated with white ginseng.The extracted ginsenosides were characterized by combining an ultra-high-performance liquid chromatography coupled to a highresolution mass spectrometry with supplemental UNIFI libraries.Response surface methodology was statistically used to optimize the extraction procedure of the ginsenosides.The reusability of Fe3O4@-SiO2@PDA NPs was also examined and the results showed that the recovery rate exceeded 80%after recycling 6 times.Furthermore,the proposed method showed greater enrichment efficiency and could rapidly determine and characterize 23 ginsenoside prototypes and metabolites from plasma.In comparison,conventional methanol method can only detect 8 ginsenosides from the same plasma samples.The proposed approach can provide methodological reference for the trace determination and characterization of different bioactive ingredients and metabolites of traditional Chinese medicines and food. 展开更多
关键词 Fe3O4@SiO2@PDA NPs Multiple recognition sites magnetic dispersive solid-phase extraction ENRICHMENT GINSENOSIDES
下载PDF
MSPE-UPLC-MS/MS测定生活饮用水中呋喃丹、敌敌畏、乐果及马拉硫磷 被引量:1
2
作者 王猛 杨雪丽 +1 位作者 肖潇 马鑫 《环境卫生学杂志》 2021年第5期447-452,共6页
目的利用合成的磁性碳材料作吸附剂,建立一种快速测定生活饮用水中呋喃丹、敌敌畏、乐果及马拉硫磷4种农药残留量的磁分散固相萃取—超高效液相色谱串联质谱方法(MSPE-UPLC-MS/MS)。方法水样中加入磁性碳材料进行分散固相萃取,在外部磁... 目的利用合成的磁性碳材料作吸附剂,建立一种快速测定生活饮用水中呋喃丹、敌敌畏、乐果及马拉硫磷4种农药残留量的磁分散固相萃取—超高效液相色谱串联质谱方法(MSPE-UPLC-MS/MS)。方法水样中加入磁性碳材料进行分散固相萃取,在外部磁场作用下弃去溶液后,加入甲醇洗脱,洗脱液过滤膜后经C;柱分离,电喷雾正离子化模式下,以多反应监测(multi-reaction monitoring, MRM)方式检测。结果呋喃丹、乐果和马拉硫磷在(0.10~50.0)μg/L,敌敌畏在(0.20~100.0)μg/L浓度范围内线性良好,分析物线性相关系数r≥0.999 0;方法检出限为(0.017~0.050)μg/L,最低检测质量浓度为(0.06~0.17)μg/L;3个浓度加标回收率为88.0%~105.7%范围内,相对标准偏差为2.0%~12.1%(n=6);磁性材料重复使用10次后依然具有较好的吸附性能。结论本方法简便、高效、准确,可用于生活饮用水中呋喃丹、敌敌畏、乐果及马拉硫磷4种农药残留量的检测。 展开更多
关键词 磁分散固相萃取 农药 超高效液相色谱串联质谱法
下载PDF
Constructing bifunctional magnetic porous poly(divinylbenzene)polymer for high-efficient removal and sensitive detection of bisphenols
3
作者 Mengyuan Li Xitong Ren +4 位作者 Yanmei Gao Mengyao Mu Shiping Zhu Shufang Tian Minghua Lu 《Chinese Chemical Letters》 SCIE CAS 2024年第12期492-496,共5页
In view of widespread existence and toxicity,removal and detection of bisphenols is imperative to asses environmental risks and reduce harm to human health.Although many techniques have been reported constructing fast... In view of widespread existence and toxicity,removal and detection of bisphenols is imperative to asses environmental risks and reduce harm to human health.Although many techniques have been reported constructing fast and sensitive method remains a challenge.Herein,porous poly(divinylbenzene)polyme was synthesized in-situ on the Fe_(3)O_(4)particles by means of distillation-precipitation polymerization and functioned as sorbents to extract bisphenols.Employing Fe_(3)O_(4)@poly(divinylbenzene)as sorbent,a mag netic solid-phase extraction coupling with liquid chromatography was developed to detect trace bisphe nols in water.This method presented low detection limits(0.01–0.03 ng/m L),high enrichment ability(en richment factor,327–343),and good reproducibility.Moreover,the method showed satisfactory recoverie in the detection of lake water(80.60%-116.2%)and egg sample(75.17%-120.0%).Impressively,Fe_(3)O_(4)@PDVB has excellent adsorption capacity,which can realize rapid kinetic adsorption of bisphenols with equi librium time all less than 10 s.The maximum adsorption capacities reached 1074.8,1049.7,1299.1 and 1329.5 mg/g for bisphenol F,bisphenol A,bisphenol B and bisphenol AF with Langmuir isotherm model The adsorption mechanism of Fe_(3)O_(4)@PDVB to bisphenols was investigated and demonstrated that hy drophobic interactions played a key role,together with assistance ofπ-πstacking interactions and hy drogen interactions.Overall,this work provides a promising sorbent material with ultra-fast and large adsorption capacities for extraction of bisphenols from water. 展开更多
关键词 Sample pretreatment Bisphenols(BPs) Porous organic polymer magnetic solid-phase extraction(mspe) Adsorption
原文传递
基于分子印迹磁性复合材料的基质分散-固相萃取/液相色谱法测定海水中的氯酚类污染物 被引量:15
4
作者 王新鑫 杨军 +4 位作者 谢晟瑜 陈扬 刘芳伶 沈昊宇 夏清华 《分析测试学报》 CAS CSCD 北大核心 2015年第11期1213-1219,共7页
建立了一种快速、高效、灵敏的基质分散-磁性固相萃取/液相色谱(d MSPE-HPLC)方法,用于海水中5种氯酚类(CPs)污染物残留量的测定。样品用五氯酚分子印迹氨基功能化磁性复合材料富集,在C8反相液相色谱柱(250 mm×4.6 mm×5.... 建立了一种快速、高效、灵敏的基质分散-磁性固相萃取/液相色谱(d MSPE-HPLC)方法,用于海水中5种氯酚类(CPs)污染物残留量的测定。样品用五氯酚分子印迹氨基功能化磁性复合材料富集,在C8反相液相色谱柱(250 mm×4.6 mm×5.0μm)上分离,以甲醇-5 mmol/L乙酸铵水溶液(体积比70∶30)为流动相,230 nm处检测。考察了样品p H值、萃取时间和洗脱剂的种类与用量对CPs富集回收率的影响。结果表明,在最佳实验条件下,5种CPs在1~5 000 ng/L浓度范围内呈良好的线性关系,相关系数(r2)均大于0.998 9;平均回收率为86.5%~98.8%,相对标准偏差(RSDs)为0.8%~8.6%;检出限(LODs)为0.18~1.20 ng/L,定量下限(LOQs)为0.6~4.0 ng/L。方法可用于海水中CPs类化合物的快速筛查和确证分析。 展开更多
关键词 氨基功能化 分子印迹磁性材料 氯酚类污染物 海水 基质分散-磁性固相萃取
下载PDF
石墨相氮化碳材料在样品前处理中的研究进展 被引量:9
5
作者 韩丽珍 杨艺欣 +2 位作者 张婧 郭敬功 卢明华 《色谱》 CAS CSCD 北大核心 2020年第1期28-35,共8页
作为一种新型非金属材料,石墨相氮化碳以其独特的优点,如简单的制备方法、优良的化学及热稳定性、良好的生物兼容性和无毒性等,受到越来越多的关注。石墨相氮化碳及其复合材料目前已被广泛应用于电催化、光催化、生物成像等领域。由于... 作为一种新型非金属材料,石墨相氮化碳以其独特的优点,如简单的制备方法、优良的化学及热稳定性、良好的生物兼容性和无毒性等,受到越来越多的关注。石墨相氮化碳及其复合材料目前已被广泛应用于电催化、光催化、生物成像等领域。由于具有大的比表面积,同时又是富电子的疏水材料,石墨相氮化碳相关材料被认为是一种理想的样品前处理吸附剂。该文探讨了近年来石墨相氮化碳及其复合材料作为固相萃取、分散固相萃取、磁性固相萃取、固相微萃取吸附剂在样品前处理中的应用,并对未来的发展趋势和应用前景进行了展望,以期为相关领域的研究提供帮助。 展开更多
关键词 石墨相氮化碳 样品前处理 固相萃取 分散固相萃取 磁性固相萃取 固相微萃取 吸附剂 综述
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部