BACKGROUND Ureteropelvic junction obstruction(UPJO)is a common congenital urinary tract disorder in children.It can be diagnosed as early as in utero due to the presence of hydronephrosis or later in life due to sympt...BACKGROUND Ureteropelvic junction obstruction(UPJO)is a common congenital urinary tract disorder in children.It can be diagnosed as early as in utero due to the presence of hydronephrosis or later in life due to symptomatic occurrence.AIM To evaluate the discrepancy between dynamic contrast-enhanced magnetic resonance urography(dMRU)and scintigraphy 99m-technetium mercaptoacetyltriglycine(MAG-3)for the functional evaluation of UPJO.METHODS Between 2016 and 2020,126 patients with UPJO underwent surgery at Robert DebréHospital.Of these,83 received a prenatal diagnosis,and 43 were diagnosed during childhood.Four of the 126 patients underwent surgery based on the clinical situation and postnatal ultrasound findings without undergoing functional imaging evaluation.Split renal function was evaluated preoperatively using scintigraphy MAG-3(n=28),dMRU(n=53),or both(n=40).In this study,we included patients who underwent surgery for UPJO and scintigraphy MAG-3+dMRU but excluded those who underwent only scintigraphy MAG-3 or dMRU.The patients were divided into groups A(<10%discrepancy)and B(>10%discrepancy).We examined the discrepancy in split renal function between the two modalities and investigated the possible risk factors.RESULTS The split renal function between the two kidneys was compared in 40 patients(28 boys and 12 girls)using scintigraphy MAG-3 and dMRU.Differential renal function,as determined using both modalities,showed a difference of<10%in 31 children and>10%in 9 children.Calculation of the relative renal function using dMRU revealed an excellent correlation coefficient with renal scintigraphy MAG-3 for both kidneys.CONCLUSION Our findings demonstrated that dMRU is equivalent to scintigraphy MAG-3 for evaluating split renal function in patients with UPJO.展开更多
We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to...We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.展开更多
We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materia...We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materials at GHz frequency, as well as new approaches to these materials' characterization. High frequency magnetic properties of magnetic materials determined by the magnetization dynamics of coherent precession are described by the Landau-Lifshitz-Gitbert equation. However, the complexity of the equation results in a lack of analytically universal information between the high frequency magnetic properties and the magnetization dynamics of coherent precession. Consequently, searching for magnetic materials with higher permeability at higher working frequency is still done case by case.展开更多
Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-bas...Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH,however these are limited by radiation exposure,subjective qualitative bias,and lack of cardiac functional assessment.This review aims to assess the methodology,diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages,limitations and future research scope.展开更多
In this editorial,we discuss the clinical implications of the article“Lymphatic plastic bronchitis and primary chylothorax:A study based on computed tomography lymphangiography”published by Li et al.Pulmonary lympha...In this editorial,we discuss the clinical implications of the article“Lymphatic plastic bronchitis and primary chylothorax:A study based on computed tomography lymphangiography”published by Li et al.Pulmonary lymphatic disorders involve abnormalities in the lymphatic tissues within the thoracic cavity.Specifically,pulmonary lymphatic perfusion syndrome describes a condition where the flow of lymphatic fluid in the lungs is redirected towards abnormally widened lymphatic vessels.Clinically,individuals with this syn-drome may experience symptoms such as chyloptysis,plastic bronchitis(PB),chylothorax,chylopericardium,and interstitial lung disease.These disorders can be caused by various factors,including PB,chylothorax,and complex lymphatic malformations.Advancements in lymphatic imaging techniques,such as in-tranodal lymphangiography,computed tomography lymphangiography,and dynamic contrast-enhanced magnetic resonance lymphangiography,have enabled the detection of abnormal lymphatic flow.This has enhanced our understanding of the pathophysiology of these conditions.Additionally,innovative minimally invasive treatments,such as thoracic duct embolization,selective embolization of lymphatic channels,and surgical procedures aim to improve clinical condition of patients and address their dietary needs.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of anti...Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of antiangiogenic therapy, evaluating tumor viability after anticancer therapy or ablation, and diagnosis of liver cirrhosis and its severity. In this review, we discuss the basic concepts of perfusion MRI using tracer kinetic modeling, the common kinetic models applied for analyses, the MR scanning techniques, methods of data processing, and evidence that supports its use from published clinical and research studies. Technical standardization and further studies will help to establish and validate perfusion MRI as a clinical imaging modality.展开更多
Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifyi...Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifying LNs metastasis is not well understood. In the present study, 59 patients with histologically proven rectal carcinoma underwent preoperative QDCE-MRI. The short axis diameter ratio, long axis diameter ratio, short-to-long axis diameter ratio and QDEC-MRI parameters(Ktrans, Kep, fPV and Ve) values were compared between the non-metastatic(n=44) and metastatic(n=35) LNs groups based on pathological examination. Compared with the non-metastatic group, the metastatic group exhibited significantly higher short axis diameter(7.558±0.668 mm vs. 5.427±0.285 mm), Ktrans(0.483±0.198 min-1 vs. 0.218±0.116 min^-1) and Ve(0.399±0.118 vs. 0.203±0.096) values(all P〈0.05). The short-to-long axis diameter ratio, long axis diameter ratio, Kep and fPV values did not show significant differences between the two groups. In conclusion, our results showed that for LNs larger than 5 mm in rectal cancer, there are distinctive differences in the Ktrans and Ve values between the metastatic and non-metastatic LNs, suggesting that QDCE-MRI may be potentially helpful in identifying LNs status.展开更多
Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) ...Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.展开更多
In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusio...In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusion characteristics. Tumor angiogenesis is an essential process for tumor growth, proliferation, and metastasis. Malignant lesions demonstrate rapid extravasation of contrast from the intravascular space to the capillary bed due to leaky capillaries associated with tumor neovascularity. DCE-MRI has the potential to provide information regarding blood flow, areas of hypoperfusion, and variations in endothelial permeability and microvessel density to aid treatment selection, enable frequent monitoring during treatment and assess response to targeted therapy following treatment. This review will discuss the current status of DCE-MRI in cancer imaging, with a focus on its use in imaging prostate malignancies as well as weaknesses that limit its widespread clinical use. The latest techniques for quantification of DCE-MRI parameters will be reviewed and compared.展开更多
Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Ma...Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.展开更多
The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to ana...The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.展开更多
G-protein-coupled receptors(GPCRs)mediate a wide range of cellular responses to various ligands or stimuli,and are the most important drug targets associated with human diseases.While major advances in GPCR structural...G-protein-coupled receptors(GPCRs)mediate a wide range of cellular responses to various ligands or stimuli,and are the most important drug targets associated with human diseases.While major advances in GPCR structural biology have greatly deepened our understanding of its activation mechanism,the highly complex changes in the structural dynamics of GPCRs during activation remain underdetermined and their links to physiological functions largely unknown.Solution nuclear magnetic resonance(NMR)spectroscopy is an essential technique that allows the characterization of protein structural dynamics at atomic level,and has been applied in the studies of GPCR structural-function relationship in the past decade.Herein,we summarize a few specific studies in which solution NMR methods were employed and provided novel insights into questions difficult to be addressed by other methods.展开更多
The dynamic NMR (DNMR) method was used to detect kinetic parameters of the molecular exchange process between monomers in bulk solution and those in the micelle for Gemini surfactants, 12-s-12 and 14-s-14 (s 2, 3 a...The dynamic NMR (DNMR) method was used to detect kinetic parameters of the molecular exchange process between monomers in bulk solution and those in the micelle for Gemini surfactants, 12-s-12 and 14-s-14 (s 2, 3 and 4). The escape rate constant, k^- , was derived based on the simplified equations of DNMR theory, and the apparent activation energy of escape, Ea^- , was obtained based on the Arrhenius equation through temperature variation experiments. Results show that the orders of magnitude of k^- for 14-s-14 and 12-s-12 are respectively 10 and 103 s-1, Ea^- of 14-s-14 and 12-s-12 are respectively 54.04-73.64 and 33.42-47.09 kJ/rnol. Furthermore, k increases and Ea^- decreases with the spacer length growing. In combination with the rnicro-polarity measurements, it was revealed that molecules of 14-s-14 and 12-s-12 have to experience conformation changes when escaping from the rnicelles. The two-step molecular exchange mechanism for Gemini surfactants was therefore supported.展开更多
We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic fi...We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.展开更多
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions...Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions.展开更多
The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of ma...The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of magnetic molecules and can greatly influence relaxation times.However,such interaction is often considered harmful and challenging to manipulate in molecular solids,especially for high-performance lanthanide single-ion magnets(SIMs).By an elaborately designed combination of ion pairing and hydrogen bonding,we have synthesized two pseudo-D5h SIMs with supramolecular arrangements of magnetic dipoles in staggered and side-by-side patterns,the latter of which exhibits a 104-fold slower zero-field relaxation time at 2 K.Intriguingly,the side-by-side complex exhibits a significantly accelerated magnetic relaxation upon diamagnetic dilution,contrary to the general trend observed in the staggered complex.This strongly reveals the presence of aggregation-induced suppression of quantum tunneling in a side-by-side arrangement,which has not been observed in mononuclear SMMs.By leveraging ion-pairing aggregation and converting to a side-by-side pattern,this study successfully demonstrates an approach to transform a harmful intermolecular dipole interaction into a beneficial one,achieving aτQTM of 980 s ranking among the best-performance SMMs.展开更多
Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investiga...Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investigate the role of DCR-MR in predicting progression-free survival (PFS) in patients with NPC using magnetic resonance (MR)- and DCE-MR-based radiomic models. A total of 434 patients with two MR scanning sequences were included. The MR- and DCE-MR-based radiomics models were developed based on 289 patients with only MR scanning sequences and 145 patients with four additional pharmacokinetic parameters (volume fraction of extravascular extracellular space (ve), volume fraction of plasma space (vp), volume transfer constant (Ktrans), and reverse reflux rate constant (kep) of DCE-MR. A combined model integrating MR and DCE-MR was constructed. Utilizing methods such as correlation analysis, least absolute shrinkage and selection operator regression, and multivariate Cox proportional hazards regression, we built the radiomics models. Finally, we calculated the net reclassification index and C-index to evaluate and compare the prognostic performance of the radiomics models. Kaplan-Meier survival curve analysis was performed to investigate the model’s ability to stratify risk in patients with NPC. The integration of MR and DCE-MR radiomic features significantly enhanced prognostic prediction performance compared to MR- and DCE-MR-based models, evidenced by a test set C-index of 0.808 vs 0.729 and 0.731, respectively. The combined radiomics model improved net reclassification by 22.9%-52.6% and could significantly stratify the risk levels of patients with NPC (p = 0.036). Furthermore, the MR-based radiomic feature maps achieved similar results to the DCE-MR pharmacokinetic parameters in terms of reflecting the underlying angiogenesis information in NPC. Compared to conventional MR-based radiomics models, the combined radiomics model integrating MR and DCE-MR showed promising results in delivering more accurate prognostic predictions and provided more clinical benefits in quantifying and monitoring phenotypic changes associated with NPC prognosis.展开更多
AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially...AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially pancreatic carcinoma coexisting with chronic pancreatitis and tumor-forming pancreatitis. METHODS: Forty-eight consecutive patients who underwent surgery for a focal pancreatic mass, including pancreatic ductal carcinoma (n = 33), tumor-forming pancreatitis (n = 8), and islet cell tumor (n = 7), were reviewed. Five pancreatic carcinomas coexisted with longstanding chronic pancreatitis. The pancreatic TICs were obtained from the pancreatic mass and the pancreatic parenchyma both proximal and distal to the mass lesion in each patient, prior to surgery, and were classified into 4 types according to the time to a peak: 25 s and 1, 2, and 3 min after the bolus injection of contrast material, namely, type-Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively, and were then compared to the corresponding histological pancreatic conditions. RESULTS: Pancreatic carcinomas demonstrated type-Ⅲ (n = 13) or Ⅳ (n = 20) TIC. Tumor-forming pancreatitis showed type-Ⅱ (n = 5) or Ⅲ (n = 3) TIC. All islet cell tumors revealed type-Ⅰ. The type-Ⅳ TIC was only recognized in pancreatic carcinoma, and the TIC of carcinoma always depicted the slowest rise to a peak among the 3 pancreatic TICs measured in each patient, even in patients with chronic pancreatitis.CONCLUSION: Pancreatic TIC from dynamic MRI provides reliable information for distinguishing pancreatic carcinoma from other pancreatic masses, and may enable us to avoid unnecessary pancreatic surgery and delays in making a correct diagnosis of pancreatic carcinoma, especially, in patients with longstanding chronic pancreatitis.展开更多
Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)enables tumor vascular physiology to be assessed.Within the tumor tissue,contrast agents(gadolinium chelates)extravasate from intravascular into the extrava...Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)enables tumor vascular physiology to be assessed.Within the tumor tissue,contrast agents(gadolinium chelates)extravasate from intravascular into the extravascular extracellular space(EES),which results in a signal increase on T1-weighted MRI.The rate of contrast agents extravasation to EES in the tumor tissue is determined by vessel leakiness and blood flow.Thus,the signal measured on DCE-MRI represents a combination of permeability and perfusion.The semi-quantitative analysis is based on the calculation of heuristic parameters that can be extracted from signal intensity-time curves.These enhancing curves can also be deconvoluted by mathematical modeling to extract quantitative parameters that may reflect tumor perfusion,vascular volume,vessel permeability and angiogenesis.Because hepatocellular carcinoma(HCC)is a hypervascular tumor,many emerging therapies focused on the inhibition of angiogenesis.DCE-MRI combined with a pharmacokinetic model allows us to produce highly reproducible and reliable parametric maps of quantitative parameters in HCC.Successful therapies change quantitative parameters of DCE-MRI,which may be used as early indicators of tumor response to anti-angiogenesis agents that modulate tumor vasculature.In the setting of clinical trials,DCE-MRI may provide relevant clinical information on the pharmacodynamic and biologic effects of novel drugs,monitor treatment response and predict survival outcome in HCC patients.展开更多
文摘BACKGROUND Ureteropelvic junction obstruction(UPJO)is a common congenital urinary tract disorder in children.It can be diagnosed as early as in utero due to the presence of hydronephrosis or later in life due to symptomatic occurrence.AIM To evaluate the discrepancy between dynamic contrast-enhanced magnetic resonance urography(dMRU)and scintigraphy 99m-technetium mercaptoacetyltriglycine(MAG-3)for the functional evaluation of UPJO.METHODS Between 2016 and 2020,126 patients with UPJO underwent surgery at Robert DebréHospital.Of these,83 received a prenatal diagnosis,and 43 were diagnosed during childhood.Four of the 126 patients underwent surgery based on the clinical situation and postnatal ultrasound findings without undergoing functional imaging evaluation.Split renal function was evaluated preoperatively using scintigraphy MAG-3(n=28),dMRU(n=53),or both(n=40).In this study,we included patients who underwent surgery for UPJO and scintigraphy MAG-3+dMRU but excluded those who underwent only scintigraphy MAG-3 or dMRU.The patients were divided into groups A(<10%discrepancy)and B(>10%discrepancy).We examined the discrepancy in split renal function between the two modalities and investigated the possible risk factors.RESULTS The split renal function between the two kidneys was compared in 40 patients(28 boys and 12 girls)using scintigraphy MAG-3 and dMRU.Differential renal function,as determined using both modalities,showed a difference of<10%in 31 children and>10%in 9 children.Calculation of the relative renal function using dMRU revealed an excellent correlation coefficient with renal scintigraphy MAG-3 for both kidneys.CONCLUSION Our findings demonstrated that dMRU is equivalent to scintigraphy MAG-3 for evaluating split renal function in patients with UPJO.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFF01010303,2017YFB0702702,and 2016YFA0300701)the National Natural Sciences Foundation of China(Grant Nos.52031015,1187411,51427801,and 51871235)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant Nos.QYZDJ-SSW-JSC023,KJZD-SW-M01,and ZDYZ2012-2).
文摘We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.
基金supported by the National Basic Research Program of China(Grant No.2012CB933101)the National Natural Science Foundation of China(Grant Nos.11034004 and 51371093)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1251)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130211130003)
文摘We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materials at GHz frequency, as well as new approaches to these materials' characterization. High frequency magnetic properties of magnetic materials determined by the magnetization dynamics of coherent precession are described by the Landau-Lifshitz-Gitbert equation. However, the complexity of the equation results in a lack of analytically universal information between the high frequency magnetic properties and the magnetization dynamics of coherent precession. Consequently, searching for magnetic materials with higher permeability at higher working frequency is still done case by case.
文摘Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH,however these are limited by radiation exposure,subjective qualitative bias,and lack of cardiac functional assessment.This review aims to assess the methodology,diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages,limitations and future research scope.
文摘In this editorial,we discuss the clinical implications of the article“Lymphatic plastic bronchitis and primary chylothorax:A study based on computed tomography lymphangiography”published by Li et al.Pulmonary lymphatic disorders involve abnormalities in the lymphatic tissues within the thoracic cavity.Specifically,pulmonary lymphatic perfusion syndrome describes a condition where the flow of lymphatic fluid in the lungs is redirected towards abnormally widened lymphatic vessels.Clinically,individuals with this syn-drome may experience symptoms such as chyloptysis,plastic bronchitis(PB),chylothorax,chylopericardium,and interstitial lung disease.These disorders can be caused by various factors,including PB,chylothorax,and complex lymphatic malformations.Advancements in lymphatic imaging techniques,such as in-tranodal lymphangiography,computed tomography lymphangiography,and dynamic contrast-enhanced magnetic resonance lymphangiography,have enabled the detection of abnormal lymphatic flow.This has enhanced our understanding of the pathophysiology of these conditions.Additionally,innovative minimally invasive treatments,such as thoracic duct embolization,selective embolization of lymphatic channels,and surgical procedures aim to improve clinical condition of patients and address their dietary needs.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.
基金Supported by Singapore Cancer Syndicate (SCS_CS-0072)Biomedical Research Council (BMRC 08/1/31/19/577)+1 种基金CRUK and EPSRC Cancer Imaging Centre in association with the MRC and Department of Health (England) grant C1060/A10334NHS funding to the NIHR
文摘Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of antiangiogenic therapy, evaluating tumor viability after anticancer therapy or ablation, and diagnosis of liver cirrhosis and its severity. In this review, we discuss the basic concepts of perfusion MRI using tracer kinetic modeling, the common kinetic models applied for analyses, the MR scanning techniques, methods of data processing, and evidence that supports its use from published clinical and research studies. Technical standardization and further studies will help to establish and validate perfusion MRI as a clinical imaging modality.
基金supported by the Provincial Key Clinical Specialty(Medical Imaging)Development Program from Health and Family Planning Commission of Hunan Province,China(No.2015/43)the Health and Family Planning Commission of Hunan Province,China(No.B2016060)the National Key Clinical Specialty(Oncology Department)Development Program from National Health and Family Planning Commission of China(No.2013/544)
文摘Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifying LNs metastasis is not well understood. In the present study, 59 patients with histologically proven rectal carcinoma underwent preoperative QDCE-MRI. The short axis diameter ratio, long axis diameter ratio, short-to-long axis diameter ratio and QDEC-MRI parameters(Ktrans, Kep, fPV and Ve) values were compared between the non-metastatic(n=44) and metastatic(n=35) LNs groups based on pathological examination. Compared with the non-metastatic group, the metastatic group exhibited significantly higher short axis diameter(7.558±0.668 mm vs. 5.427±0.285 mm), Ktrans(0.483±0.198 min-1 vs. 0.218±0.116 min^-1) and Ve(0.399±0.118 vs. 0.203±0.096) values(all P〈0.05). The short-to-long axis diameter ratio, long axis diameter ratio, Kep and fPV values did not show significant differences between the two groups. In conclusion, our results showed that for LNs larger than 5 mm in rectal cancer, there are distinctive differences in the Ktrans and Ve values between the metastatic and non-metastatic LNs, suggesting that QDCE-MRI may be potentially helpful in identifying LNs status.
基金supported by Beijing Natural Science Foundation(No.7122029)
文摘Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.
文摘In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusion characteristics. Tumor angiogenesis is an essential process for tumor growth, proliferation, and metastasis. Malignant lesions demonstrate rapid extravasation of contrast from the intravascular space to the capillary bed due to leaky capillaries associated with tumor neovascularity. DCE-MRI has the potential to provide information regarding blood flow, areas of hypoperfusion, and variations in endothelial permeability and microvessel density to aid treatment selection, enable frequent monitoring during treatment and assess response to targeted therapy following treatment. This review will discuss the current status of DCE-MRI in cancer imaging, with a focus on its use in imaging prostate malignancies as well as weaknesses that limit its widespread clinical use. The latest techniques for quantification of DCE-MRI parameters will be reviewed and compared.
文摘Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.
文摘The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
文摘G-protein-coupled receptors(GPCRs)mediate a wide range of cellular responses to various ligands or stimuli,and are the most important drug targets associated with human diseases.While major advances in GPCR structural biology have greatly deepened our understanding of its activation mechanism,the highly complex changes in the structural dynamics of GPCRs during activation remain underdetermined and their links to physiological functions largely unknown.Solution nuclear magnetic resonance(NMR)spectroscopy is an essential technique that allows the characterization of protein structural dynamics at atomic level,and has been applied in the studies of GPCR structural-function relationship in the past decade.Herein,we summarize a few specific studies in which solution NMR methods were employed and provided novel insights into questions difficult to be addressed by other methods.
基金supported by the National Natural Science Foundation of China (No.21375145)
文摘The dynamic NMR (DNMR) method was used to detect kinetic parameters of the molecular exchange process between monomers in bulk solution and those in the micelle for Gemini surfactants, 12-s-12 and 14-s-14 (s 2, 3 and 4). The escape rate constant, k^- , was derived based on the simplified equations of DNMR theory, and the apparent activation energy of escape, Ea^- , was obtained based on the Arrhenius equation through temperature variation experiments. Results show that the orders of magnitude of k^- for 14-s-14 and 12-s-12 are respectively 10 and 103 s-1, Ea^- of 14-s-14 and 12-s-12 are respectively 54.04-73.64 and 33.42-47.09 kJ/rnol. Furthermore, k increases and Ea^- decreases with the spacer length growing. In combination with the rnicro-polarity measurements, it was revealed that molecules of 14-s-14 and 12-s-12 have to experience conformation changes when escaping from the rnicelles. The two-step molecular exchange mechanism for Gemini surfactants was therefore supported.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474183,51371105 and 51177088the Korea Research Foundation(NRF) under Grant No 2010-0021735+1 种基金the Leading Foreign Research Institute Recruitment Program of Korea under Grant No 2010-00471the Science and Technology Department of Hubei Province under Grant No 2014BEC060
文摘We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.
文摘Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFA0306001NSFC,Grant/Award Numbers:22073115,22131011,21821003+2 种基金Pearl River Talent Plan of Guangdong,Grant/Award Number:2017BT01C161Science and Technology Projects in Guangzhou,Grant/Award Number:202201011095Guangdong Basic Research Center of Excellence for Functional Molecular Engineering。
文摘The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of magnetic molecules and can greatly influence relaxation times.However,such interaction is often considered harmful and challenging to manipulate in molecular solids,especially for high-performance lanthanide single-ion magnets(SIMs).By an elaborately designed combination of ion pairing and hydrogen bonding,we have synthesized two pseudo-D5h SIMs with supramolecular arrangements of magnetic dipoles in staggered and side-by-side patterns,the latter of which exhibits a 104-fold slower zero-field relaxation time at 2 K.Intriguingly,the side-by-side complex exhibits a significantly accelerated magnetic relaxation upon diamagnetic dilution,contrary to the general trend observed in the staggered complex.This strongly reveals the presence of aggregation-induced suppression of quantum tunneling in a side-by-side arrangement,which has not been observed in mononuclear SMMs.By leveraging ion-pairing aggregation and converting to a side-by-side pattern,this study successfully demonstrates an approach to transform a harmful intermolecular dipole interaction into a beneficial one,achieving aτQTM of 980 s ranking among the best-performance SMMs.
基金the Natural Science Foundation of Hainan Province,No.821MS125the National Key R&D Program of China,No.2023YFC2415200+6 种基金the Key R&D projects in Hainan Province,No.ZDYF-2021SHFZ239the Natural Science Research Project“open competition mechanism”of Hainan Medical College,Nos.JBGS202113 and JBGS202107Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB 38040200National Natural Science Foundation of China,Nos.82372053,82302296,81871346,81971602,82022036,91959130,81971776,81771924,62027901,81930053Beijing Natural Science Foundation,No.L182061 and Z20J00105Chinese Academy of Sciences,Nos.GJJSTD20170004 and QYZDJ-SSW-JSC005and Youth Innovation Promotion Association CAS,No.2017175.
文摘Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investigate the role of DCR-MR in predicting progression-free survival (PFS) in patients with NPC using magnetic resonance (MR)- and DCE-MR-based radiomic models. A total of 434 patients with two MR scanning sequences were included. The MR- and DCE-MR-based radiomics models were developed based on 289 patients with only MR scanning sequences and 145 patients with four additional pharmacokinetic parameters (volume fraction of extravascular extracellular space (ve), volume fraction of plasma space (vp), volume transfer constant (Ktrans), and reverse reflux rate constant (kep) of DCE-MR. A combined model integrating MR and DCE-MR was constructed. Utilizing methods such as correlation analysis, least absolute shrinkage and selection operator regression, and multivariate Cox proportional hazards regression, we built the radiomics models. Finally, we calculated the net reclassification index and C-index to evaluate and compare the prognostic performance of the radiomics models. Kaplan-Meier survival curve analysis was performed to investigate the model’s ability to stratify risk in patients with NPC. The integration of MR and DCE-MR radiomic features significantly enhanced prognostic prediction performance compared to MR- and DCE-MR-based models, evidenced by a test set C-index of 0.808 vs 0.729 and 0.731, respectively. The combined radiomics model improved net reclassification by 22.9%-52.6% and could significantly stratify the risk levels of patients with NPC (p = 0.036). Furthermore, the MR-based radiomic feature maps achieved similar results to the DCE-MR pharmacokinetic parameters in terms of reflecting the underlying angiogenesis information in NPC. Compared to conventional MR-based radiomics models, the combined radiomics model integrating MR and DCE-MR showed promising results in delivering more accurate prognostic predictions and provided more clinical benefits in quantifying and monitoring phenotypic changes associated with NPC prognosis.
文摘AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially pancreatic carcinoma coexisting with chronic pancreatitis and tumor-forming pancreatitis. METHODS: Forty-eight consecutive patients who underwent surgery for a focal pancreatic mass, including pancreatic ductal carcinoma (n = 33), tumor-forming pancreatitis (n = 8), and islet cell tumor (n = 7), were reviewed. Five pancreatic carcinomas coexisted with longstanding chronic pancreatitis. The pancreatic TICs were obtained from the pancreatic mass and the pancreatic parenchyma both proximal and distal to the mass lesion in each patient, prior to surgery, and were classified into 4 types according to the time to a peak: 25 s and 1, 2, and 3 min after the bolus injection of contrast material, namely, type-Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively, and were then compared to the corresponding histological pancreatic conditions. RESULTS: Pancreatic carcinomas demonstrated type-Ⅲ (n = 13) or Ⅳ (n = 20) TIC. Tumor-forming pancreatitis showed type-Ⅱ (n = 5) or Ⅲ (n = 3) TIC. All islet cell tumors revealed type-Ⅰ. The type-Ⅳ TIC was only recognized in pancreatic carcinoma, and the TIC of carcinoma always depicted the slowest rise to a peak among the 3 pancreatic TICs measured in each patient, even in patients with chronic pancreatitis.CONCLUSION: Pancreatic TIC from dynamic MRI provides reliable information for distinguishing pancreatic carcinoma from other pancreatic masses, and may enable us to avoid unnecessary pancreatic surgery and delays in making a correct diagnosis of pancreatic carcinoma, especially, in patients with longstanding chronic pancreatitis.
文摘Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)enables tumor vascular physiology to be assessed.Within the tumor tissue,contrast agents(gadolinium chelates)extravasate from intravascular into the extravascular extracellular space(EES),which results in a signal increase on T1-weighted MRI.The rate of contrast agents extravasation to EES in the tumor tissue is determined by vessel leakiness and blood flow.Thus,the signal measured on DCE-MRI represents a combination of permeability and perfusion.The semi-quantitative analysis is based on the calculation of heuristic parameters that can be extracted from signal intensity-time curves.These enhancing curves can also be deconvoluted by mathematical modeling to extract quantitative parameters that may reflect tumor perfusion,vascular volume,vessel permeability and angiogenesis.Because hepatocellular carcinoma(HCC)is a hypervascular tumor,many emerging therapies focused on the inhibition of angiogenesis.DCE-MRI combined with a pharmacokinetic model allows us to produce highly reproducible and reliable parametric maps of quantitative parameters in HCC.Successful therapies change quantitative parameters of DCE-MRI,which may be used as early indicators of tumor response to anti-angiogenesis agents that modulate tumor vasculature.In the setting of clinical trials,DCE-MRI may provide relevant clinical information on the pharmacodynamic and biologic effects of novel drugs,monitor treatment response and predict survival outcome in HCC patients.