期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Magnetic emission intensity enhancement for amorphous alloys by constructing a multi-phase structure withα-Fe nanocrystals
1
作者 Ke Liu Zhi Qin +5 位作者 Jie Shen Zhi Cheng Shiyue You Liang Ma Jing Zhou Wen Chen 《Nano Research》 SCIE EI CSCD 2024年第7期6630-6637,共8页
The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency com... The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency communications.However,the magnetic emission intensity,defined by the perturbation ability,of current commercially applied amorphous alloys,such as Metglas,cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss.Herein,a multi-phase Metglas amorphous alloy was constructed by incorporatingα-Fe nanocrystals using rapid annealing to manipulate the domain movement.It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms.Moreover,the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites(MFC).Enhancements of magnetic emission intensity are found at 93.3%and 49.2%at the first and second harmonic frequencies compared with the unmodified alloy vibrator.Therefore,the approach leads to the development of high-performance communication with a novel standard for evaluation. 展开更多
关键词 multi-phase amorphous alloys magnetic emission intensity enhancing mechanism magnetic domain pinning theory Jiles-Atherton model analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部