Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts:...Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.展开更多
We investigate equilibrium height of a flux rope, and its internal equilib- rium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux ro...We investigate equilibrium height of a flux rope, and its internal equilib- rium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilib- rium height of a flux rope is approximately described by a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms that a catastrophe in the magnetic configuration of interest can be triggered by a decrease in strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope com- mences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence of the initial radius of the flux rope in its evolution; the results indicate that a flux rope with a larger initial radius erupts more easily. In addition, by using a realistic plasma environment and a much higher resolution in our simulations, we notice some different characteristics compared to previous studies in Forbes.展开更多
The cryogenic ground support equipment (CGSE) is an important part of Alpha Magnetic Spectrometer-02 (AMS-02) experiment which is a particle physics experiment. CGSE is used to cool down the superconducting magnet of ...The cryogenic ground support equipment (CGSE) is an important part of Alpha Magnetic Spectrometer-02 (AMS-02) experiment which is a particle physics experiment. CGSE is used to cool down the superconducting magnet of AMS-02 to its operating temperature of 1.8K and to fill the magnet helium tank with superfluid helium. This paper introduces the control system of CGSE and presents the performance of the system.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11975163 and 12175160)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.
基金Supported by the National Natural Science Foundation of China
文摘We investigate equilibrium height of a flux rope, and its internal equilib- rium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilib- rium height of a flux rope is approximately described by a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms that a catastrophe in the magnetic configuration of interest can be triggered by a decrease in strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope com- mences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence of the initial radius of the flux rope in its evolution; the results indicate that a flux rope with a larger initial radius erupts more easily. In addition, by using a realistic plasma environment and a much higher resolution in our simulations, we notice some different characteristics compared to previous studies in Forbes.
基金the National Basic Research Program(973) of China (No. 2004CB720703)
文摘The cryogenic ground support equipment (CGSE) is an important part of Alpha Magnetic Spectrometer-02 (AMS-02) experiment which is a particle physics experiment. CGSE is used to cool down the superconducting magnet of AMS-02 to its operating temperature of 1.8K and to fill the magnet helium tank with superfluid helium. This paper introduces the control system of CGSE and presents the performance of the system.