The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with r...The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.展开更多
A magnetic shape memory alloy with nonstoichiometric Ni50Mn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt...A magnetic shape memory alloy with nonstoichiometric Ni50Mn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt-spun ribbon were investigated. The experimental results showed that the melt-spun ribbons underwent thermal-elastic martensitic transformation and reverse transformation in cooling and heating process and exhibited typical thermo-elastic shape memory effect. However the start temperature for martensitic transformation decreased from 286 K for as-cast alloy to 254 K for as-quenched ribbon and Curie temperature remains approximately constant. A particular internal stress induced by melt-spinning resulted in the formation of a texture structure in the ribbons, which made the ribbons obtain larger martensitic transformation strain and MFIS. The internal stress was released substantially after annealing, which resulted in a decrease of MFIS of the ribbons.展开更多
The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase wit...The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.展开更多
Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (137...Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.展开更多
The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises fro...The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.展开更多
A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can...A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained.展开更多
The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memor...The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.展开更多
A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and st...A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.展开更多
The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy ...The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.展开更多
The effect of Co content on magnetic property and phase stability of Ni50-xMn25Ga25Cox ferromagnetic shape memory alloys has been investigated using first-principles calculations. The total energy difference between p...The effect of Co content on magnetic property and phase stability of Ni50-xMn25Ga25Cox ferromagnetic shape memory alloys has been investigated using first-principles calculations. The total energy difference between paramagnetic and ferromagnetic state of austenite plays an important role in the magnetic transition. The high Curie temperature can be attributed to the stronger Co-Mn exchange interaction as compared to the Ni-Mn one. The phase stability of Niso-xMn25Ga25Cox austenite increases with increasing Co content, which is discussed based on the electronic structure.展开更多
The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initi...The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.展开更多
Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control de...Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.展开更多
The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared b...The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates.展开更多
This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response,...This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.展开更多
The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to parama...The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.展开更多
A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga a...A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved.展开更多
The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigate...The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.展开更多
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the...Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.展开更多
A hysteric model is represented to describe the dependence of restoring force on deformation of pseudoelastic SMA.The dynamic response of the system is investigated by means of mathematical models.The result shows th...A hysteric model is represented to describe the dependence of restoring force on deformation of pseudoelastic SMA.The dynamic response of the system is investigated by means of mathematical models.The result shows that this kind of vibration absorbing system can suppress vibration with large amplitude effectively.Furthermore,the vibration absorbing system can work in optimum state by adjusting temperature and using piezoelectric sensors and actuators.展开更多
The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity mea...The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity measurement.The sequence of hysteresis for the alloy aged under different regimes was found to be:plate martensite>R-phase>tie-like martensite. The reversible displaeement of phase boundaries of these transformations is blocked by the co- herent stress field around Ti_(11)Ni_(14)phase particles.A linear relationship between S paramet- er of positron annihilation and maximum values of temperature hysteresis showed that the mismatch dislocation and elastic stress field established by Ti_(11)Ni_(14)phase precipitation are the main factor to determine the temperature hysteresis of phase transformation in NiTi shape memory alloy.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant No.50177019by the Education Department of China under grant No.20040142004.
文摘The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.
基金This work was supported by“863”Program under grant No.2001AA327022.
文摘A magnetic shape memory alloy with nonstoichiometric Ni50Mn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt-spun ribbon were investigated. The experimental results showed that the melt-spun ribbons underwent thermal-elastic martensitic transformation and reverse transformation in cooling and heating process and exhibited typical thermo-elastic shape memory effect. However the start temperature for martensitic transformation decreased from 286 K for as-cast alloy to 254 K for as-quenched ribbon and Curie temperature remains approximately constant. A particular internal stress induced by melt-spinning resulted in the formation of a texture structure in the ribbons, which made the ribbons obtain larger martensitic transformation strain and MFIS. The internal stress was released substantially after annealing, which resulted in a decrease of MFIS of the ribbons.
基金This study was supported by the National Natural Science Foundation of China grant No.50271023 the Natural Science Foundation of Hebei Province(No.503031).
文摘The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.
基金Projects (50771037, 50371020) supported by the National Natural Science Foundation of ChinaProject (2011B090400485) supported by the Combination Project for Guangdong Province and the Ministry of Education, China
文摘Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.
基金Project (1253-NCET-009) supported by Program for New Century Excellent Talents in Heilongjiang Provincial University,ChinaProject (1251G022) supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProjects (50901026,51301054) supported by the National Natural Science Foundation of China
文摘The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.
基金supported by the National Natural Science Foundation of China (Nos.10772021 and 10972027)
文摘A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained.
基金Project(51105170) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.
基金the National Natural Science Foundation of China (No. 50271002) New Century Program for Excellent Talents of Ministry of Education of China (No. 04-0165).
文摘A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.
基金Project supported by the New Century Excellent Talents in Heilongjiang Provincial University,China(Grant No.1253-NCET-009)the Youth Academic Backbone in Heilongjiang Provincial University,China(Grant No.1251G022)the National Natural Science Foundation of China(Grant Nos.50901026 and 51301054)
文摘The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50901026)the Youth Topnotch Inno-vative Talents Program of Harbin University of Science and Technology
文摘The effect of Co content on magnetic property and phase stability of Ni50-xMn25Ga25Cox ferromagnetic shape memory alloys has been investigated using first-principles calculations. The total energy difference between paramagnetic and ferromagnetic state of austenite plays an important role in the magnetic transition. The high Curie temperature can be attributed to the stronger Co-Mn exchange interaction as compared to the Ni-Mn one. The phase stability of Niso-xMn25Ga25Cox austenite increases with increasing Co content, which is discussed based on the electronic structure.
基金Project (50871039) supported by the National Natural Science Foundation of ChinaProject (2011ZB0007) supported by the Fundamental Research Funds for Central Universities of ChinaProject (201104090881) support by China Postdoctoral Science Foundation
文摘The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.
基金National Natural Science Foundation of China Under Grant No.50178006Beijing Natural Science Foundation Under Grant No. 8042008 Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality
文摘Abstract: Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, fottr types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272229 and 11302144)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.20120032120006)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.13JCYBJC17900)
文摘The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates.
文摘This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.
文摘The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271065 and 51301054)the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department,China(Grant No.1253-NCET-009)+1 种基金the Youth Academic Backbone in Heilongjiang Provincial Education Department,China(Grant No.1251G022)the Projects of Heilongjiang,China,and China Postdoctoral Science Foundation
文摘A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved.
文摘The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.
基金The National Natural Science Foundation of China(12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation(2022M712243)the Fundamental Research Funds for the Central Universities(2023SCU12098)are acknowledged.
文摘Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.
基金This project is supported by National Natural Science Foundation of China and the 21st Century Youth Foundation of Tianjin
文摘A hysteric model is represented to describe the dependence of restoring force on deformation of pseudoelastic SMA.The dynamic response of the system is investigated by means of mathematical models.The result shows that this kind of vibration absorbing system can suppress vibration with large amplitude effectively.Furthermore,the vibration absorbing system can work in optimum state by adjusting temperature and using piezoelectric sensors and actuators.
文摘The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity measurement.The sequence of hysteresis for the alloy aged under different regimes was found to be:plate martensite>R-phase>tie-like martensite. The reversible displaeement of phase boundaries of these transformations is blocked by the co- herent stress field around Ti_(11)Ni_(14)phase particles.A linear relationship between S paramet- er of positron annihilation and maximum values of temperature hysteresis showed that the mismatch dislocation and elastic stress field established by Ti_(11)Ni_(14)phase precipitation are the main factor to determine the temperature hysteresis of phase transformation in NiTi shape memory alloy.