期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
1
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
Heat and Mass Transfer for a Nanofluid Flow in Fluidized Bed Dryer in Presence of Induced Magnetic Field
2
作者 Kiptum J. Purity Mathew N. Kinyanjui Edward R. Onyango 《Journal of Applied Mathematics and Physics》 2024年第4期1401-1425,共25页
This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i... This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers. 展开更多
关键词 Heat Transfer Induced magnetic field NANOFLUID Fluidized Bed Dryer
下载PDF
MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field 被引量:7
3
作者 F.M.ALI R.NAZAR +1 位作者 N.M.ARIFIN I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期409-418,共10页
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The non... The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail. 展开更多
关键词 boundary layer heat transfer induced magnetic field numerical solution magnetohydrodynamic (MHD) flow stretching sheet
下载PDF
Effect of induced magnetic field on natural convection in vertical concentric annuli 被引量:2
4
作者 R.K.Singh A.K.Singh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期315-323,共9页
In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field pro... In the present paper, we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a ra- dial magnetic field. The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account. The transport equations concerned with the con- sidered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity, induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylin- der of concentric annuli. The effects of the various phys- ical parameters appearing into the model are demonstrated through graphs and tables. It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap be- tween the cylinders is less or equal to 1.70 times the radius of inner cylinder, while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder. These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases. It is also found that as the Hartmann number increases, there is a flattening ten- dency for both the velocity and the induced magnetic field. The influence of the induced magnetic field is to increase the velocity profiles. 展开更多
关键词 Natural convection ISOTHERMAL Heat flux SKIN-FRICTION Induced magnetic field Magnetohydrody- namics
下载PDF
Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel 被引量:1
5
作者 S.NADEEM N.S.AKBAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第8期969-978,共10页
In this paper, the influence of heat transfer and induced magnetic field on peristaltic flow of a Johnson-Segalman fluid is studied. The purpose of the present investigation is to study the effects of induced magnetic... In this paper, the influence of heat transfer and induced magnetic field on peristaltic flow of a Johnson-Segalman fluid is studied. The purpose of the present investigation is to study the effects of induced magnetic field on the peristaltic flow of non-Newtonian fluid. The two-dimensional equations of a Johnson-Segalman fluid are simplified by assuming a long wavelength and a low Reynolds number. The obtained equations are solved for the stream function, magnetic force function, and axial pressure gradient by using a regular perturbation method. The expressions for the pressure rise, temperature, induced magnetic field, pressure gradient, and stream function are sketched and interpreted for various embedded parameters. 展开更多
关键词 induced magnetic field vertical symmetric channel Johnson-Segalman fluid magnetohydrodynamics (MHD)
下载PDF
Slip and induced magnetic field effects on peristaltic transport of Johnson-Segalman fluid
6
作者 T.HAYAT S.NOREEN A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第8期1035-1048,共14页
The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition. The symmetric nature of the flow in a channel is utilized. The velocity slip c... The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition. The symmetric nature of the flow in a channel is utilized. The velocity slip condition in terms of shear stresses is considered. The mathematical formulation is presented, and the equations are solved under long wavelength and low Reynolds number approximations. The perturbation solutions are established for the pressure, the axial velocity, the micro-rotation component, the stream function, the magnetic-force function, the axial induced magnetic field, and the current distribution across the channel. The solution expressions for small Weissenberg numbers are derived. The flow quantities of interest are sketched and analyzed. 展开更多
关键词 induced magnetic field slip condition Johnson-Segalman fluid
下载PDF
Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes
7
作者 于桂丽 贾永雷 唐刚 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期82-85,共4页
In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculation... In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculations, it is found that for the Mll and M22 transitions, the exeiton states are split into four separate column states by the applied magnetic field due to the symmetry breaking. More interesting is that the splitting can be directly reflected from the linear absorption spectra~ which are dominated by four main absorption peaks. In addition, the splitting with increasing the axial magnetic field is also calculated, which increases linearly with the applied magnetic field. The obtained results are expected to be detected by the future experiments. 展开更多
关键词 by it on of in Splitting Phenomenon Induced by magnetic field in Metallic Carbon Nanotubes SWNTS that is been
下载PDF
Unsteady Heat Transfer of Viscous Incompressible Boundary Layer Fluid Flow through a Porous Plate with Induced Magnetic Field
8
作者 Ariful Islam Muhammad Minarul Islam +2 位作者 Mahabur Rahman Lasker Ershad Ali Md. Shakhaoath Khan 《Journal of Applied Mathematics and Physics》 2016年第2期294-306,共13页
Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of therm... Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities. 展开更多
关键词 Heat Transfer Porous Medium Induced magnetic field Finite Difference Method
下载PDF
Screening-current-induced magnetic fields and strains in a compact REBCO coil in self field and background field
9
作者 Yufan Yan Donghui Jiang +4 位作者 Peng Song Jeonghwan Park Seungyong Hahn Yunfei Tan Timing Qu 《Superconductivity》 2024年第1期35-49,共15页
REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the gr... REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field. 展开更多
关键词 Electromagnetic-mechanical analysis High‐field insert coil REBCO coated conductor Screening‐current‐induced magnetic field Screening‐current‐induced stress
原文传递
Combined heat and mass transfer by mixed convection MHD flow along a porous plate with chemical reaction in presence of heat source 被引量:1
10
作者 J.ZUECO S.AHMED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第10期1217-1230,共14页
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass tra... An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing. 展开更多
关键词 MHD perturbation technique network simulation method Eckert number mixed convection induced magnetic field viscous dissipation heat source/sink
下载PDF
Radiation effect on magnetohydrodynamic flow with induced magnetic field and Newtonian heating/cooling:an analytic approach 被引量:1
11
作者 Dileep Kumar 《Propulsion and Power Research》 SCIE 2021年第3期303-313,共11页
The aim of the present analysis concerns the magnetohydrodynamic flow of fluid which is natural convective and electrically charged through two vertical insulated walls.Influences of radiative heat flux,induced magnet... The aim of the present analysis concerns the magnetohydrodynamic flow of fluid which is natural convective and electrically charged through two vertical insulated walls.Influences of radiative heat flux,induced magnetic field,and the Newtonian heating/cooling are taken.We found exact expressions for the temperature field,the velocity field,and the induced magnetic field by solving the set of dimensionless coupled governing equations.Further,we obtained the equations for induced current density,Nusselt number,skin frictions as well as mass flux.The influences of the several constraints like the magnetic,the radiation and the Newtonian heating/cooling on the profiles of the velocity,the temperature field,the induced magnetic field as well as the current density display with graphics.Moreover,the influence of these non-dimensional parameters on the skin frictions,the Nusselt number,and the mass flux is explored in tabular form.The outcome of the radiation raised the velocity,the temperature field,the induced magnetic field and the current density field in view of enhancing the thickness of the boundary layer.Also,the impact of Newtonian heating is to raise the velocity,temperature,induced magnetic field and induced current density,whereas all these fields have opposite behaviors in case of Newtonian cooling. 展开更多
关键词 MAGNETOHYDRODYNAMICS Thermal radiation Newtonian heating/cooling Induced magnetic field Skin friction
原文传递
Interplay of non-conducting and conducting walls on magnetohydrodynamic(MHD)natural convection flow in vertical micro-channel in the presence of induced magnetic field 被引量:1
12
作者 Basant K.Jha Babatunde Aina 《Propulsion and Power Research》 SCIE 2018年第4期296-307,共12页
In this research paper,exact solution for fully developed magnetohydrodynamic(MHD)natural convection flow of viscous,incompressible,electrically conducting fluid in parallel walls in the presence of velocity slip and ... In this research paper,exact solution for fully developed magnetohydrodynamic(MHD)natural convection flow of viscous,incompressible,electrically conducting fluid in parallel walls in the presence of velocity slip and temperature jump at the micro-channel walls electrically conducting fluid in the presence of transverse magnetic field is taken into equations are coupled.The exact solutions in dimensionless form have been obtained under temperature field,induced current density and skin friction have been obtained.The effects of interaction,Hartmann number and the magnetic Prandtl number are demonstrated through number causes a pronounced reduction in volume flow rate. 展开更多
关键词 Transverse magnetic field Induced magnetic field Velocity slip Temperature jump Electrically conducting Electrically non-conductingwalls
原文传递
Impact of induced magnetic field on magnetohydrodynamic(MHD)natural convection flow in a vertical annular microchannel in the presence of radial magnetic field
13
作者 Basant K.Jha Babatunde Aina 《Propulsion and Power Research》 SCIE 2018年第2期171-181,共11页
This study is devoted to investigate the effect of induced magnetic field on fully developed magnetohydrodynamic(MHD)natural convection flow of electrically conducting fluid in a vertical annular micro-channel formed ... This study is devoted to investigate the effect of induced magnetic field on fully developed magnetohydrodynamic(MHD)natural convection flow of electrically conducting fluid in a vertical annular micro-channel formed by two concentric cylinders in the presence of imposed radial magnetic field.The velocity slip and temperature jump at the annular micro-channel surfaces are taken into account.The influence of induced magnetic field arising due to the motion of an electrically conducting fluid is taken into consideration.The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained under relevant boundary conditions.The expressions for velocity field,the induced magnetic field,temperature field,induced current density and skin friction have been obtained.A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity field,the induced magnetic field,temperature,induced current density,volume flow rate and skin friction are illustrated graphically to show interesting features of the radius ratio,rarefaction,fluid wall interaction,Hartmann number and the magnetic Prandtl number.During the course of investigation,it is found that for fixed value of Hartmann number,the skin friction profiles in the presence of induced magnetic field are higher compared to the case when the induced magnetic field is neglected. 展开更多
关键词 Natural convection Vertical annular microchannel Induced magnetic field Hartmann number Velocity slip Temperature jump
原文传递
Natural Propulsion with Lorentz Force and Nanoparticles in a Bioinspired Lopsided Ciliated Channel
14
作者 Noreen Sher Akbar Liaqat Ali Khan +1 位作者 Zafar Hayat Khan Nazir Ahmed Mir 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第1期172-181,共10页
The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has tremendous applications in various fields. Inspired ... The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has tremendous applications in various fields. Inspired by multidisciplinary invention in this direction, a fuid mechanical model is proposed to study the Magneto-hydrodynamics (MHD) and heat transfer for nanofluids fabricated by the dispersion of nanoparticles in water as base fluid. The steady flow is induced by metachronal wave propulsion due to beating cilia. The flow regime is asymmetric channel. The flow is restricted under the low Reynolds number and long wavelength approximations. Cilia boundary conditions for velocity components are employed to find the exact solutions. The impacts of pertinent physical parameters on temperature profile, velocity profile, pressure, and stream lines are computed numerically. It is observed that velocity is inversely proportional to magnetic Reynolds number, Reynolds number, Strommer's number and velocity is directly proportional to flow rate. It is analyzed that temperature is inversely proportional to Strommer's number and magnetic Reynolds number and directly proportional to Brinkmann number and flow rate. The temperature is maximum at the center of the channel and it starts decreasing towards the boundary walls. 展开更多
关键词 copper water NANOPARTICLES induced magnetic field asymmetric ciliated channel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部