期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Magnetic Field Curves and Magnetic Equipotential Surfaces around Crossing Electrical Wires Replacing Classical Magnetic Field Lines
1
作者 Geoffroy Auvert 《Open Journal of Applied Sciences》 2024年第8期1996-2008,共13页
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with... This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel. 展开更多
关键词 magnetic field Value magnetic field Vector magnetic field Line magnetic field Curve Equipotential Surface Crossing Electrical Wires magnetic Cross Product
下载PDF
Modeling Density and Anisotropy of Energetic Electrons Along Magnetic Field Lines 被引量:3
2
作者 肖伏良 冯学尚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第3期279-284,共6页
The electromagnetic wave growth or damping depends basically on the number density and anisotropy of energetic particles as the resonant interaction takes place between the particles and waves in the magnetosphere. Th... The electromagnetic wave growth or damping depends basically on the number density and anisotropy of energetic particles as the resonant interaction takes place between the particles and waves in the magnetosphere. The variance of both the number density and anisotropy along the magnetic field line is evaluated systematically by modeling four typically prescribed distribution functions. It is shown that in the case of "the positive anisotropy" (namely, the perpendicular temperature T⊥ exceeds the parallel temperature T||), the number density of energetic electrons always decreases with the magnetic latitude for a regular increasing magnetic field and the maximum wave growth is therefore generally confined to the equator where the resonant energy is minimum, and the number density is the largest. However, the "loss-cone" anisotropy of the electrons with a "pancake" distribution or kappa distribution keeps invariant or nearly invariant, whereas the "temperature" anisotropy with a pure bi-Maxwellian distribution or Ashour-Abdalla and Kennel's distributions decreases with the magnetic latitude. The results may provide a useful approach to evaluating the number density and anisotropy of the energetic electrons at latitudes where the observation information is not available. 展开更多
关键词 number density ANISOTROPY distribution function magnetic field line
下载PDF
Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster 被引量:2
3
作者 赵杰 唐德礼 +3 位作者 耿少飞 王世庆 柳建 许丽 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期109-112,共4页
Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shie... Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced. 展开更多
关键词 cylindrical Hall thruster anode magnetic shield magnetic field line magnetic mirror ratio saddle magnetic field profile ion beam
下载PDF
Matching characteristics of magnetic field configuration and chamfered channel wall in a magnetically shielded Hall thruster 被引量:1
4
作者 Zhaoyu Wang Hong Li +4 位作者 Chao Zhong Yanlin Hu Yongjie Ding Liqiu Wei Daren Yu 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第10期72-80,共9页
To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study wa... To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters. 展开更多
关键词 magnetically shielded Hall thruster magnetic field line chamfered channel wall tangent matching
下载PDF
Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field 被引量:3
5
作者 宋鑫 王庆 +2 位作者 蔺增 张谱辉 王书豪 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期115-121,共7页
This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction.Electromagnetic coils and permanent magnets were installed at the different side... This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction.Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface,the photographs of cathode spots motion trajectory were captured by a camera.Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity.Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil's current,from 40 mm at 0 A to 10 mm at 2.7 A.Parallel magnetic field component intensity influence the speed of cathode spots rotate motion,and perpendicular magnetic field component drives spots drift in the radial direction.Cathode spot's radial drift is controlled by changing the location of the ‘zero line' where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line'. 展开更多
关键词 magnetic field component cathode spots motion velocity drift zero line
下载PDF
Joint observations of the large-scale ULF wave activity from space to ground associated with the solar wind dynamic pressure enhancement
6
作者 SUN XiaoYing HU YunPeng +3 位作者 ZHIMA Zeren DUAN SuPing LV FangXian SHEN XuHui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2215-2229,共15页
This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satel... This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES(China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories(GBO) GAKO and EAGL in the Earth's polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of0.04–0.36 Hz at L shells of ~5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide L-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of L-shells~2.52–6.29, the magnetic field line resonances(FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source;on the other hand, around L~3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of L-shells ~5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase. 展开更多
关键词 ultralow-frequency(ULF)wave solar wind dynamic pressure(P_(sw)) magnetic field line resonance(FLR) ion cyclotron instability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部