期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array
1
作者 丁佩 王俊俏 +3 位作者 何金娜 范春珍 蔡根旺 梁二军 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期472-477,共6页
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the... Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements. 展开更多
关键词 magnetic plasmon lattice resonance field enhancement nanoparticles array
下载PDF
Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
2
作者 周偲 袁少康 +8 位作者 朱登玉 白宇明 王韬 刘福福 潘禄禄 冯存芳 张博涵 何大平 汪胜祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期618-622,共5页
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un... The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment. 展开更多
关键词 enhanced resonance frequency magnetic resonance field flexible graphene substrate
下载PDF
Frost Resistance of Pervious Concrete Mixed with Waste Glass Powder
3
作者 AN Baofeng LI Qiong +4 位作者 QIAO Hongxia SU Rui WANG Xi WANG Chaoqun JIAO Daowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1325-1336,共12页
The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as... The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours. 展开更多
关键词 pervious concrete glass powder frost resistance energy dispersive analysis test low field nuclear magnetic resonance instrument life prediction
下载PDF
3.0-Tesla:OPPORTUNITIES AND CHALLENGES 被引量:1
4
作者 Zheng-yu Jin Hui You 《Chinese Medical Sciences Journal》 CAS CSCD 2006年第4期205-208,共4页
With the development of magnetic resonance (MR) technology, the concern is focused on molecular and physiological imaging besides structural information. Ultra high field MR scanner shows great superiority. 3.0-T MR... With the development of magnetic resonance (MR) technology, the concern is focused on molecular and physiological imaging besides structural information. Ultra high field MR scanner shows great superiority. 3.0-T MR scanners provide almost two-fold signal-to-noise ratio (SNR) compared with a standard 1.5-T MR scanner. The higher baseline SNR can be converted into a variety of alternative benefits. There are still some other changes brought about by 3.0-T, such as higher sensitivity to motion, susceptibility effect, more difference in resonant frequency among different metabohies, and so on. These features may be a double-edged sword in structural and functional imaging. But with the ceaseless progress of the technology and gains in experience, 3.0-T systems will provide more information and show more advantages. 展开更多
关键词 ultra high field magnetic resonance signal-to-noise ratio morphological imaging functional magnetic resonance imaging
下载PDF
A Novel Method to Enhance the Inversion Speed and Precision of the NMR T_(2) Spectrum by the TSVD Based Linearized Bregman Iteration
5
作者 Yiguo Chen Congjun Feng +4 位作者 Yonghong He Zhijun Chen Xiaowei Fan Chao Wang Xinmin Ge 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2451-2463,共13页
The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the ex... The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios. 展开更多
关键词 Low field nuclear magnetic resonance linearized bregman iteration truncated singular value decomposition numerical simulations
下载PDF
Joint observations of the large-scale ULF wave activity from space to ground associated with the solar wind dynamic pressure enhancement
6
作者 SUN XiaoYing HU YunPeng +3 位作者 ZHIMA Zeren DUAN SuPing LV FangXian SHEN XuHui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2215-2229,共15页
This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satel... This study reports the rare ultralow-frequency(ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17(Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES(China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories(GBO) GAKO and EAGL in the Earth's polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of0.04–0.36 Hz at L shells of ~5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide L-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of L-shells~2.52–6.29, the magnetic field line resonances(FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source;on the other hand, around L~3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of L-shells ~5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase. 展开更多
关键词 ultralow-frequency(ULF)wave solar wind dynamic pressure(P_(sw)) magnetic field line resonance(FLR) ion cyclotron instability
原文传递
Simultaneous Determination of Oil and Water in Soybean by LF-NMR Relaxometry and Chemometrics 被引量:2
7
作者 WU Jing LI Yanru GAO Xingsheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第5期731-735,共5页
A fast, non-destructive and eco-friendly method was developed to simultaneously determine the oil and water contents of soybean based on low field nuclear magnetic resonance(LF-NMR) relaxometry combined with chemome... A fast, non-destructive and eco-friendly method was developed to simultaneously determine the oil and water contents of soybean based on low field nuclear magnetic resonance(LF-NMR) relaxometry combined with chemometrics, such as partial least squares regression(PLSR). The Carr-Purcell-Meiboom-Gill(CPMG) magnetiza- tion decay data of ten soybean samples were acquired by LF-NMR and directly applied to the PLSR analysis. Cali- bration models were established via PLSR with full cross-validation based on the reference values obtained by the Soxhlet extraction method for measuring oil and oven-drying method for measuring water. The results indicate that the calibration models are satisfactory for both oil and water determinations; the root mean squared errors of cross-validation(RMSECV) for oil and water are 0.2285% and 0.0178%, respectively. Furthermore, the oil and water contents in unknown soybean samples were predicted by the PLSR models and the results were compared with the reference values. The relative errors of the predicted oil and water contents were in ranges of 1.25%---4.96% and 0.44%--2.49%, respectively. These results demonstrate that the combination of LF-NMR relaxometry with chemo- metrics shows great potential for the simultaneous determination of contents of oil and water in soybean with high accuracy. 展开更多
关键词 Low field nuclear magnetic resonance(LF-NMR) SOYBEAN Oil content Water content Partial leastsquares regression(PLSR)
原文传递
Pore size distribution of high volatile bituminous coal of the southern Junggar Basin: a full-scale characterization applying multiple methods 被引量:2
8
作者 Wanchun ZHAO Xin LI +1 位作者 Tingting WANG Xuehai FU 《Frontiers of Earth Science》 SCIE CSCD 2021年第2期237-255,共19页
Studying on the pore size distribution of coal is vital for determining reasonable coalbed methane development strategies.The coalbed methane project is in progress in the southern Junggar Basin of northwestern China,... Studying on the pore size distribution of coal is vital for determining reasonable coalbed methane development strategies.The coalbed methane project is in progress in the southern Junggar Basin of northwestern China,where high volatile bituminous coal is reserved.In this study,with the purpose of accurately characterizing the full-scale pore size distribution of the high volatile bituminous coal of the southern Junggar Basin,two grouped coal samples were applied for mercury intrusion porosimetry,low-temperature nitrogen adsorption,low-field nuclear magnetic resonance,rate-controlled mercury penetration,scanning electron microscopy,and nano-CT measurements.A comprehensive pore size distribution was proposed by combining the corrected mercury intrusion porosimetry data and low-temperature nitrogen adsorption data.The relationship between transverse relaxation time(T2,ms)and the pore diameter was determined by comparing the T2 spectrum with the comprehensive pore size distribution.The macro-pore and throat size distributions derived from nano-CT and rate-controlled mercury penetration were distinguishingly analyzed.The results showed that:1)comprehensive pore size distribution analysis can be regarded as an accurate method to characterize the pore size distribution of high volatile bituminous coal;2)for the high volatile bituminous coal of the southern Junggar Basin,the meso-pore volume was the greatest,followed by the transition pore volume or macro-pore volume,and the micro-pore volume was the lowest;3)the relationship between T2 and the pore diameter varied for different samples,even for samples with close maturities;4)the throat size distribution derived from nano-CT was close to that derived from rate-controlled mercury penetration,while the macro-pore size distributions derived from those two methods were very different.This work can deepen the knowledge of the pore size distribution characterization techniques of coal and provide new insight for accurate pore size distribution characterization of high volatile bituminous coal. 展开更多
关键词 pore size distribution coalbed methane high volatile bituminous coal low field nuclear magnetic resonance the southern Junggar Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部