Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture ...Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture of reaction mechanism,yet the reactants for water splitting reactions are unfortunately not fully understood.Here we utilize magnetic field to understand proton transport in HER,and hydroxide ion transport in OER,to discuss the possible implications on understanding the reactants for HER and OER.Magnetic field is a known tool for changing the movement of charged species like ions,e.g.the magnetic‐field‐improved Cu^(2+)transportation near the electrode in Cu electrodeposition.However,applying a magnetic field does not affect the HER or OER rate across various pH,which challenges the traditional opinion that charged species(i.e.proton and hydroxide ion)act as the reactant.This anomalous response of HER and OER to magnetic field,and the fact that the transport of proton and hydroxide ion follow Grotthuss mechanism,collectively indicate water may act as the universal reactant for HER and OER across various pH.With the aid of magnetic field,this work serves as an understanding of water might be the reactant in HER and OER,and possibly in other electrocatalysis reactions involving protonation and deprotonation step.A model that simply focuses on the charged species but overlooking the complexity of the whole electrolyte phase where water is the dominant species,may not reasonably reflect the electrochemistry of HER and OER in aqueous electrolyte.展开更多
Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of ...Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.展开更多
Magnetic field effects on different plant species have been subject of many studies in the last decade. Magnetic fields are known to induce changes in plant metabolism, growth and productivity. In this study, effect o...Magnetic field effects on different plant species have been subject of many studies in the last decade. Magnetic fields are known to induce changes in plant metabolism, growth and productivity. In this study, effect of magnetic field on date palm weight and water content has been investigated. Seedlings of date palm were treated with two types of magnetic fields in two separate experiments. In the first experiment, seedlings were treated with static magnetic field SMF using electromagnetic circuit set to produce three levels of magnetic field intensities 10, 50 and 100 mT for different durations (0, 30, 60, 120, 180 and 240 min). In the second experiment seedlings were treated with alternating magnetic field AMF, using magnetic resonance imaging providing 1500 mT for 0, 1, 5, 10 and 15 min. After two months of exposure, plants growth parameters (fresh, dry weights and water content for both leaves and roots) were recorded. The measurements revealed that leaf fresh, dry weight and water content increased significantly in response to SMF treatment. Similarly, roots fresh weight and water content were increased significantly; however roots dry weight increasing were insignificant. In the second experiment, AMF has affected plant growth all parameters were increased significantly. Measurements reached the highest level at 15 min of exposure. This study revealed that magnetic fields affect date palm growth parameters by increasing osmotic pressure and water potential which increase water absorption and enhance flesh weight.展开更多
Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Expo...Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.展开更多
Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnet...Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnetic field B ≤ 0.3 T, dB/dz ≤ 0.13 T/cm was produced by the system of permanent strip magnets. The initial sedimentation rate of the nanoparticles in water and under magnetic fields is higher for less concentrated suspensions (c0 = 0.1 g/l) than for more concentrated ones (c0 = 1 g/l). This might be connected with the formation of gel structures due to strong magnetic attraction between ferromagnetic nanoparticles. In the gravitation field, the suspensions of the particles (10 - 20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, reducing the sedimentation time down to several minutes. In a gradient magnetic field enhanced by a steel grid, sedimentation of the nanopowder (c0 = 0.1 g/l) for 180 minutes resulted in reduction of the iron concentration in water down to 0.4 mg/l. In flowing water regime, the residual iron concentration in water 0.3 mg/l is reached after 80 minutes.展开更多
Absorption enhancement has been considered as an effective way of improving coefficient of performance (COP) of refrigeration systems and magnetic enhancement is one of these methods. A model of magnetic field enhance...Absorption enhancement has been considered as an effective way of improving coefficient of performance (COP) of refrigeration systems and magnetic enhancement is one of these methods. A model of magnetic field enhancement in ammonia-water absorption systems is presented in this paper. A numerical model using finite difference scheme was developed based on the conservation equations and mass transport relationship. Macroscopic magnetic field force was introduced in the momentum equation. The model was validated using data obtained from the literature. Changes in the physical properties of ammonia solution while absorbing both in the direction of falling film and across its thickness were investigated. The magnetic field was found to have some positive effect on the ammonia-water falling film absorption. The results indicate that absorption performance enhancement increased with magnetic intensity. The COP of simple ammonia solution absorption refrigeration system increased by 1.9% and 3.6% for magnetic induction of 1.4 and 3.0 Tesla respectively.展开更多
The effects of alternating magnetic field on the corrosion morphologies, corrosion rate, and corrosion products of copper in 3.5% NaCl solution, sea water, and magnetized sea water were investigated using electrochemi...The effects of alternating magnetic field on the corrosion morphologies, corrosion rate, and corrosion products of copper in 3.5% NaCl solution, sea water, and magnetized sea water were investigated using electrochemical test, scanning electron microscopy/energy dispersive analysis system of X-ray (SEM/EDAX), and X-ray diffraction (XRD). The results show that the corrosion rate of copper in magnetized sea water is minimal. Moreover, the surface of the specimen in magnetized sea water is uniform and compact as compared with those in 3.5% NaCl solution and sea water. The corrosion products of copper in magnetized sea water are mainly Cu2O and CuCl2. However, the corrosion products in sea water are CuCl, Cu2Cl(OH)3, and FeCl3-6H2O. The electrochemical corrosion mechanisms of copper in the three media were also discussed.展开更多
The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecul...The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface of hydrophobic materials decreases, thus the surface tension force of magnetized water decreases relative to that of pure water. It is seen from the above results that the clustering structure of hydrogen-bonded chains and polarization effects of water molecules are enhanced after magnetization. These results are helpful in revealing the mechanism of magnetization of water.展开更多
Effects of static magnetic field on optic properties of water are investigated by infrared spectroscopy, ultraviolet spectroscopy and X-ray diffraction, respectively. The ultraviolet spectroscopy experiments show the ...Effects of static magnetic field on optic properties of water are investigated by infrared spectroscopy, ultraviolet spectroscopy and X-ray diffraction, respectively. The ultraviolet spectroscopy experiments show the changes of properties of water under action of static magnetic field, in the region of 191 to 400 nm. The infrared experiment shows that the water exposed in a magnetic field had saturation and memory effects. The magnetized effects increased with increasing exposed time, but were weakened with increasing of time when the magnetic field was removed. In the X-ray experiment, the strength of diffraction increased also, after the water was exposed in magnetic field. Meanwhile, the shift of peak and increase of strength of X-ray diffraction of magnetized water added with nanoFe3O4 occurred as compared with that of pure water added with nano Fe3O4. This result suggests that the magnetized wa- ter has certain magnetism. Finally, these phenomena are simply explained by the molecular structure of water and the theory of magnetization of water.展开更多
At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota...At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.展开更多
Background As the widespread use of electric devices in modern life, human are exposed to extremely low frequency magnetic fields (ELF MF) much more frequently than ever. Over the past decades, a substantial number ...Background As the widespread use of electric devices in modern life, human are exposed to extremely low frequency magnetic fields (ELF MF) much more frequently than ever. Over the past decades, a substantial number of epidemiological and experimental studies have demonstrated that ELF MF (50 Hz) exposure is associated with increased risk of various health effects. The present study examined the effects of chronic exposure to ELF MF on anxiety level and spatial memory of adult rats. Methods The 50-Hz ELF MF was used during the whole experimental procedures and the value of magnetic field (MF) was set to 2 mT. Adult rats were divided randomly to control, MF 1 hour and MF 4 hours group. Anxiety-related behaviors were examined in the open field test and the elevated plus maze; changes in spatial learning and memory were determined in Morris water maze aRer 4 weeks of daily exposure. Results Rats in MF 4 hours group had increased anxiety-like behaviors with unaltered locomotor activity. In the Morris water maze test, rats had reduced latency to find the hidden platform and improved long-term memory of former location of platform without changes in short-term memory and locomotor activity. Conclusion Chronic ELF MF exposure has anxiogenic effect on rats, and the promoting effects on spatial learning and long-term retention of spatial memory.展开更多
Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to...Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to improve plant growth and development.Although the properties of magnetically treated water have received a great deal of interest in recent years,there are no studies conducted in Moroccan agricultural conditions.The present study aimed at gaining more insight on the effect of magnetically treated irrigation water(MTIW)in the northwest region of Morocco,on the yield of strawberry plants(Fragaria×ananassa Duch.cv.Camarosa)and its components.The experiments were conducted in situ,during two crop seasons(2011-2012 and 2013-2014).The results confirm that physical treatment of irrigation water by a static magnetic field improves the yield and quality of strawberry fruits.The percentages of increase in number of flowers,number of fruits,fruit yield and quality of export production per 100 plants were 27.4%,30.9%,34.8%,24.3%,respectively,compared with normal irrigation water(average over both crop seasons).These results suggest that irrigation with MTIW improves the production as well as the quality of the strawberry fruit,thus water use efficiency was enhanced.Therefore,the MTIW can be considered as a promising technique for improvement but extensive research is still required.展开更多
Experimental and theoretical studies of the author (period: 1968-present) have shown that true sources of </span><span style="font-family:"">the </span><span style="font-family...Experimental and theoretical studies of the author (period: 1968-present) have shown that true sources of </span><span style="font-family:"">the </span><span style="font-family:"">magnetic field are magnetic fundamental particles (magnetic charges), and not moving electrons. The main reason for <span>ignoring real magnetic charges, as well as true antielectrons in physical</span> science is the hard conditions for confinement of these particles in atoms and substance</span><span style="font-family:"">s</span><span style="font-family:"">, which </span><span style="font-family:"">is </span><span style="font-family:"">radically different from the confinement of electrons. Magnetic charges together with electric charges form the shells atoms which are <span>electromagnetic, and not electronic. Namely</span></span><span style="font-family:"">,</span><span style="font-family:""> electromagnetic shells are</span><span style="font-family:""> sources of gravitational field which is </span><span style="font-family:"">a </span><span style="font-family:"">vortex electromagnetic field and de<span>scribed by the vortex</span></span><span style="font-family:""> rot [<i>E</i> - <i>H</i>]</span><span style="font-family:"">. Depending on the state polarization o</span><span style="font-family:"">f vortex vectors </span><span style="font-family:"">rot [<i>E</i> - <i>H</i>]</span><span style="font-family:""> in compositions of atomic gravitational fields it </span><span style="font-family:"">is </span><span style="font-family:"">subdivided into paragravitational (PGF) and ferrogravitational fields </span><span style="font-family:"">(FGF). The overwhelming number of atoms emits PGF. Between the masses (bodies, atoms, nucleons and others) emitting PGF areas of negative gravitational “Dark Energy” are realized the forces of which press the masses towards each other. Namely</span><span style="font-family:"">,</span><span style="font-family:""> the compression of atoms by the forces of paragravitational “Dark Energy” underlies the chemical bond. The exception here is the ionic bond in ionic crystals. However, all ions have electromagnetic shells that generate the gravitational field. Consequently, ionic bonding is a relatively rare addition to gravito-chemical bond processes. The direct gravito-chemical bond of carbon atom</span><span style="font-family:"">s</span><span style="font-family:""> with hydrogen (<sup>1</sup>H) is physically forbidden due to </span><span style="font-family:"">the </span><span style="font-family:"">manifestation of the effect of ferrogravitational levitation between them and the repulsion of atoms from each other. Paradoxically, but all existing ideas about the structural device of hydrocarbons are based on such physically forbidden bonds which, moreover, must be realized through ionic <span>bonds which in reality do not exist. Chemical bonding of carbon and hydrogen </span>atoms to form hydrocarbons molecules is possible only if the hydrogen atoms are in the molecular form (<sup>1</sup>H<sub>2</sub>). In the composition of water, within the framework of the chemical formula H<sub>2</sub>O, two stable isomorphic molecular structures are formed. The chemical bond in the first structure is similar to the hydrocarbon scenario described above, </span><span style="font-family:""><i></span><i><span style="font-family:"">i.e.</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> in the process of combining paragravitational oxygen with a hydrogen molecule <sup>1</sup>H<sub>2</sub>. The second molecular structure in water is <span>formed under conditions of ferropolarization of the gravitational field of</span> oxygen atom</span><span style="font-family:"">s</span><span style="font-family:""> under the influence of FGF of neighboring <sup>1</sup>H atoms. In this case, the chemical bond is realized under the conditions of ferropolarization</span><span style="font-family:""> </span><span style="font-family:"">of the vortex vectors </span><span style="font-family:"">rot [<i>E</i> - <i>H</i>]</span><span style="font-family:""> of the gravitational fields of all atoms in</span><span style="font-family:""> the molecule and the co-directionality of them vectors </span><span style="font-family:""><i></span><b><i><span style="font-family:"">P</span></i></b><i><sub><span style="font-family:"">fp</span></sub></i><i><sub><span style="font-family:""></i></span></sub></i><span style="font-family:""> ferropolarization. The gravito-physical properties of the presented molecular structures in the composition of water make it possible to name them, respectively, as heavy and light clusters.展开更多
The aim of this work is the study of the magnetohydrodynamic (MHD) unsteady free convective flow of water near 4℃ past an infinitely vertical plate moving with constant velocity. The influence of constant uniform suc...The aim of this work is the study of the magnetohydrodynamic (MHD) unsteady free convective flow of water near 4℃ past an infinitely vertical plate moving with constant velocity. The influence of constant uniform suction was also considered. The partial differential equations (PDEs) and their initial and boundary conditions, describing the problem under consideration, are dimensionalized and the numerical solution is obtained by using the finite volume discretization methodology which is suitable for Fluid Mechanics applications. The numerical results for the velocity and temperature fields are shown in figures for different dimensionless parameters entering in the problem under consideration, such as the magnetic parameter, M and the Grashof number, Gr. This study predicts the effects of a constant magnetic field and uniform suction on the free convective flow of water near 4℃, when the water is electrically conductive. Analysis of the results showed that the velocity and temperature profiles are noticeably influenced by these parameters.展开更多
基金supported by the Singapore MOE Tier 2 MOE2018-T2-2-027the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme
文摘Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture of reaction mechanism,yet the reactants for water splitting reactions are unfortunately not fully understood.Here we utilize magnetic field to understand proton transport in HER,and hydroxide ion transport in OER,to discuss the possible implications on understanding the reactants for HER and OER.Magnetic field is a known tool for changing the movement of charged species like ions,e.g.the magnetic‐field‐improved Cu^(2+)transportation near the electrode in Cu electrodeposition.However,applying a magnetic field does not affect the HER or OER rate across various pH,which challenges the traditional opinion that charged species(i.e.proton and hydroxide ion)act as the reactant.This anomalous response of HER and OER to magnetic field,and the fact that the transport of proton and hydroxide ion follow Grotthuss mechanism,collectively indicate water may act as the universal reactant for HER and OER across various pH.With the aid of magnetic field,this work serves as an understanding of water might be the reactant in HER and OER,and possibly in other electrocatalysis reactions involving protonation and deprotonation step.A model that simply focuses on the charged species but overlooking the complexity of the whole electrolyte phase where water is the dominant species,may not reasonably reflect the electrochemistry of HER and OER in aqueous electrolyte.
基金National Natural Science Foundation of China,Grant/Award Numbers:21871065,22071038Heilongjiang Touyan Team,Grant/Award Number:HITTY‐20190033Interdisciplinary Research Foundation of HIT,Grant/Award Number:IR2021205。
文摘Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.
文摘Magnetic field effects on different plant species have been subject of many studies in the last decade. Magnetic fields are known to induce changes in plant metabolism, growth and productivity. In this study, effect of magnetic field on date palm weight and water content has been investigated. Seedlings of date palm were treated with two types of magnetic fields in two separate experiments. In the first experiment, seedlings were treated with static magnetic field SMF using electromagnetic circuit set to produce three levels of magnetic field intensities 10, 50 and 100 mT for different durations (0, 30, 60, 120, 180 and 240 min). In the second experiment seedlings were treated with alternating magnetic field AMF, using magnetic resonance imaging providing 1500 mT for 0, 1, 5, 10 and 15 min. After two months of exposure, plants growth parameters (fresh, dry weights and water content for both leaves and roots) were recorded. The measurements revealed that leaf fresh, dry weight and water content increased significantly in response to SMF treatment. Similarly, roots fresh weight and water content were increased significantly; however roots dry weight increasing were insignificant. In the second experiment, AMF has affected plant growth all parameters were increased significantly. Measurements reached the highest level at 15 min of exposure. This study revealed that magnetic fields affect date palm growth parameters by increasing osmotic pressure and water potential which increase water absorption and enhance flesh weight.
文摘Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.
文摘Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 - 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnetic field B ≤ 0.3 T, dB/dz ≤ 0.13 T/cm was produced by the system of permanent strip magnets. The initial sedimentation rate of the nanoparticles in water and under magnetic fields is higher for less concentrated suspensions (c0 = 0.1 g/l) than for more concentrated ones (c0 = 1 g/l). This might be connected with the formation of gel structures due to strong magnetic attraction between ferromagnetic nanoparticles. In the gravitation field, the suspensions of the particles (10 - 20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, reducing the sedimentation time down to several minutes. In a gradient magnetic field enhanced by a steel grid, sedimentation of the nanopowder (c0 = 0.1 g/l) for 180 minutes resulted in reduction of the iron concentration in water down to 0.4 mg/l. In flowing water regime, the residual iron concentration in water 0.3 mg/l is reached after 80 minutes.
文摘Absorption enhancement has been considered as an effective way of improving coefficient of performance (COP) of refrigeration systems and magnetic enhancement is one of these methods. A model of magnetic field enhancement in ammonia-water absorption systems is presented in this paper. A numerical model using finite difference scheme was developed based on the conservation equations and mass transport relationship. Macroscopic magnetic field force was introduced in the momentum equation. The model was validated using data obtained from the literature. Changes in the physical properties of ammonia solution while absorbing both in the direction of falling film and across its thickness were investigated. The magnetic field was found to have some positive effect on the ammonia-water falling film absorption. The results indicate that absorption performance enhancement increased with magnetic intensity. The COP of simple ammonia solution absorption refrigeration system increased by 1.9% and 3.6% for magnetic induction of 1.4 and 3.0 Tesla respectively.
文摘The effects of alternating magnetic field on the corrosion morphologies, corrosion rate, and corrosion products of copper in 3.5% NaCl solution, sea water, and magnetized sea water were investigated using electrochemical test, scanning electron microscopy/energy dispersive analysis system of X-ray (SEM/EDAX), and X-ray diffraction (XRD). The results show that the corrosion rate of copper in magnetized sea water is minimal. Moreover, the surface of the specimen in magnetized sea water is uniform and compact as compared with those in 3.5% NaCl solution and sea water. The corrosion products of copper in magnetized sea water are mainly Cu2O and CuCl2. However, the corrosion products in sea water are CuCl, Cu2Cl(OH)3, and FeCl3-6H2O. The electrochemical corrosion mechanisms of copper in the three media were also discussed.
基金the National Basic Research Program of China (Grant No. 2007CB936103)
文摘The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface of hydrophobic materials decreases, thus the surface tension force of magnetized water decreases relative to that of pure water. It is seen from the above results that the clustering structure of hydrogen-bonded chains and polarization effects of water molecules are enhanced after magnetization. These results are helpful in revealing the mechanism of magnetization of water.
文摘Effects of static magnetic field on optic properties of water are investigated by infrared spectroscopy, ultraviolet spectroscopy and X-ray diffraction, respectively. The ultraviolet spectroscopy experiments show the changes of properties of water under action of static magnetic field, in the region of 191 to 400 nm. The infrared experiment shows that the water exposed in a magnetic field had saturation and memory effects. The magnetized effects increased with increasing exposed time, but were weakened with increasing of time when the magnetic field was removed. In the X-ray experiment, the strength of diffraction increased also, after the water was exposed in magnetic field. Meanwhile, the shift of peak and increase of strength of X-ray diffraction of magnetized water added with nanoFe3O4 occurred as compared with that of pure water added with nano Fe3O4. This result suggests that the magnetized wa- ter has certain magnetism. Finally, these phenomena are simply explained by the molecular structure of water and the theory of magnetization of water.
基金Supported by China Coal Science and Technology Group Technology Innovation Fund Major Project(Grand No.2018ZD002)China Coal Science and Technology Group Technology Innovation Fund Youth Project(Grand No.2018-2-QN010)
文摘At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.
文摘Background As the widespread use of electric devices in modern life, human are exposed to extremely low frequency magnetic fields (ELF MF) much more frequently than ever. Over the past decades, a substantial number of epidemiological and experimental studies have demonstrated that ELF MF (50 Hz) exposure is associated with increased risk of various health effects. The present study examined the effects of chronic exposure to ELF MF on anxiety level and spatial memory of adult rats. Methods The 50-Hz ELF MF was used during the whole experimental procedures and the value of magnetic field (MF) was set to 2 mT. Adult rats were divided randomly to control, MF 1 hour and MF 4 hours group. Anxiety-related behaviors were examined in the open field test and the elevated plus maze; changes in spatial learning and memory were determined in Morris water maze aRer 4 weeks of daily exposure. Results Rats in MF 4 hours group had increased anxiety-like behaviors with unaltered locomotor activity. In the Morris water maze test, rats had reduced latency to find the hidden platform and improved long-term memory of former location of platform without changes in short-term memory and locomotor activity. Conclusion Chronic ELF MF exposure has anxiogenic effect on rats, and the promoting effects on spatial learning and long-term retention of spatial memory.
文摘Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to improve plant growth and development.Although the properties of magnetically treated water have received a great deal of interest in recent years,there are no studies conducted in Moroccan agricultural conditions.The present study aimed at gaining more insight on the effect of magnetically treated irrigation water(MTIW)in the northwest region of Morocco,on the yield of strawberry plants(Fragaria×ananassa Duch.cv.Camarosa)and its components.The experiments were conducted in situ,during two crop seasons(2011-2012 and 2013-2014).The results confirm that physical treatment of irrigation water by a static magnetic field improves the yield and quality of strawberry fruits.The percentages of increase in number of flowers,number of fruits,fruit yield and quality of export production per 100 plants were 27.4%,30.9%,34.8%,24.3%,respectively,compared with normal irrigation water(average over both crop seasons).These results suggest that irrigation with MTIW improves the production as well as the quality of the strawberry fruit,thus water use efficiency was enhanced.Therefore,the MTIW can be considered as a promising technique for improvement but extensive research is still required.
文摘Experimental and theoretical studies of the author (period: 1968-present) have shown that true sources of </span><span style="font-family:"">the </span><span style="font-family:"">magnetic field are magnetic fundamental particles (magnetic charges), and not moving electrons. The main reason for <span>ignoring real magnetic charges, as well as true antielectrons in physical</span> science is the hard conditions for confinement of these particles in atoms and substance</span><span style="font-family:"">s</span><span style="font-family:"">, which </span><span style="font-family:"">is </span><span style="font-family:"">radically different from the confinement of electrons. Magnetic charges together with electric charges form the shells atoms which are <span>electromagnetic, and not electronic. Namely</span></span><span style="font-family:"">,</span><span style="font-family:""> electromagnetic shells are</span><span style="font-family:""> sources of gravitational field which is </span><span style="font-family:"">a </span><span style="font-family:"">vortex electromagnetic field and de<span>scribed by the vortex</span></span><span style="font-family:""> rot [<i>E</i> - <i>H</i>]</span><span style="font-family:"">. Depending on the state polarization o</span><span style="font-family:"">f vortex vectors </span><span style="font-family:"">rot [<i>E</i> - <i>H</i>]</span><span style="font-family:""> in compositions of atomic gravitational fields it </span><span style="font-family:"">is </span><span style="font-family:"">subdivided into paragravitational (PGF) and ferrogravitational fields </span><span style="font-family:"">(FGF). The overwhelming number of atoms emits PGF. Between the masses (bodies, atoms, nucleons and others) emitting PGF areas of negative gravitational “Dark Energy” are realized the forces of which press the masses towards each other. Namely</span><span style="font-family:"">,</span><span style="font-family:""> the compression of atoms by the forces of paragravitational “Dark Energy” underlies the chemical bond. The exception here is the ionic bond in ionic crystals. However, all ions have electromagnetic shells that generate the gravitational field. Consequently, ionic bonding is a relatively rare addition to gravito-chemical bond processes. The direct gravito-chemical bond of carbon atom</span><span style="font-family:"">s</span><span style="font-family:""> with hydrogen (<sup>1</sup>H) is physically forbidden due to </span><span style="font-family:"">the </span><span style="font-family:"">manifestation of the effect of ferrogravitational levitation between them and the repulsion of atoms from each other. Paradoxically, but all existing ideas about the structural device of hydrocarbons are based on such physically forbidden bonds which, moreover, must be realized through ionic <span>bonds which in reality do not exist. Chemical bonding of carbon and hydrogen </span>atoms to form hydrocarbons molecules is possible only if the hydrogen atoms are in the molecular form (<sup>1</sup>H<sub>2</sub>). In the composition of water, within the framework of the chemical formula H<sub>2</sub>O, two stable isomorphic molecular structures are formed. The chemical bond in the first structure is similar to the hydrocarbon scenario described above, </span><span style="font-family:""><i></span><i><span style="font-family:"">i.e.</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> in the process of combining paragravitational oxygen with a hydrogen molecule <sup>1</sup>H<sub>2</sub>. The second molecular structure in water is <span>formed under conditions of ferropolarization of the gravitational field of</span> oxygen atom</span><span style="font-family:"">s</span><span style="font-family:""> under the influence of FGF of neighboring <sup>1</sup>H atoms. In this case, the chemical bond is realized under the conditions of ferropolarization</span><span style="font-family:""> </span><span style="font-family:"">of the vortex vectors </span><span style="font-family:"">rot [<i>E</i> - <i>H</i>]</span><span style="font-family:""> of the gravitational fields of all atoms in</span><span style="font-family:""> the molecule and the co-directionality of them vectors </span><span style="font-family:""><i></span><b><i><span style="font-family:"">P</span></i></b><i><sub><span style="font-family:"">fp</span></sub></i><i><sub><span style="font-family:""></i></span></sub></i><span style="font-family:""> ferropolarization. The gravito-physical properties of the presented molecular structures in the composition of water make it possible to name them, respectively, as heavy and light clusters.
文摘The aim of this work is the study of the magnetohydrodynamic (MHD) unsteady free convective flow of water near 4℃ past an infinitely vertical plate moving with constant velocity. The influence of constant uniform suction was also considered. The partial differential equations (PDEs) and their initial and boundary conditions, describing the problem under consideration, are dimensionalized and the numerical solution is obtained by using the finite volume discretization methodology which is suitable for Fluid Mechanics applications. The numerical results for the velocity and temperature fields are shown in figures for different dimensionless parameters entering in the problem under consideration, such as the magnetic parameter, M and the Grashof number, Gr. This study predicts the effects of a constant magnetic field and uniform suction on the free convective flow of water near 4℃, when the water is electrically conductive. Analysis of the results showed that the velocity and temperature profiles are noticeably influenced by these parameters.