We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the ...We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 tr level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 MG, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.展开更多
Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that ...Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that the fluid flow in the core of a star cannot be laminar, so it is turbulent. However, we will see in this study that the configuration in which the conductive fluid contained in the core of a star is in rapid rotation around an axis of symmetry is the one that best explains the origin of the magnetic field of stars and planets. It also explains why certain types of stars have very intense magnetic fields. Indeed, we will show here that the magnetic field of stars and planets is created by the electric current generated by the rotational movement of charged fluid particles as in an electromagnet. The lines of this magnetic field are channelled by the solid paramagnetic seed which plays the role of magnetic core in the cores of planets and stars. The seed is composed mainly of Iron and Nickel on the planets and of solid helium-3 in the stars. In this work, we will use this model of rapidly rotating fluids to introduce a new way to ionize a neutral gas and maintain it in a plasma state for indefinitely large time scales, to present a new technique for generating very intense magnetic fields, to establish a new magnetic nucleation process and to propose a new type of nuclear fusion reactor in which the plasma is perpetually rapidly rotating.展开更多
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on th...The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.展开更多
This paper shows that superstrong magnetic fields (such as those of magnetars) can increase the energy generation rate many times in the crust of neutron stars. This result undoubtedly not only influences the coolin...This paper shows that superstrong magnetic fields (such as those of magnetars) can increase the energy generation rate many times in the crust of neutron stars. This result undoubtedly not only influences the cooling of neutron stars and the X-ray luminosity observed of neutron stars but also the evolution of neutron stars.展开更多
Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibr...Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibrium and thermal evolution of neutron stars with decaying magnetic fields. We find that the power-law long term decay of the magnetic field slightly affects the deviation from chemical equilibrium and surface temperature. However, the magnetic decay leads to older neutron stars that could have a different surface temperature with the same magnetic field strength. That is, older neutron stars with a low magnetic field (10^8 G) could have a lower temper- ature even with rotochemical heating in operation, which probably explains the lack of other observations on older millisecond pulsars with higher surface temperature, except millisecond pulsar J0437-4715.展开更多
We calculate the mass-radius relationship of quark stars with the magnetized density- dependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a...We calculate the mass-radius relationship of quark stars with the magnetized density- dependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively smaller impact on the mass and radius, compared to the force-free configuration, which implies that the geometry of the interior magnetic field is at least as important as the field strength itself when the influ- ence of the strong magnetic field on the mass and radius is assessed.展开更多
We first present the multicolor photometry results of the rapidly rotating magnetic star HD 345439 using the Nanshan One-meter Wide-field Telescope.From the photometric observations,we derive a rotational period of 0....We first present the multicolor photometry results of the rapidly rotating magnetic star HD 345439 using the Nanshan One-meter Wide-field Telescope.From the photometric observations,we derive a rotational period of 0.7699±0.0014 day.The light curves of HD 345439 are dominated by the double asymmetric S-wave feature that arises from the magnetic clouds.Pulsating behaviors are not observed in Sector 41 of the Transiting Exoplanet Survey Satellite.No evidence is found of the occurrence of centrifugal breakout events neither in the residual flux nor in the systematic variations at the extremum of the light curve.Based on the hypothesis of the Rigidly Rotating Magnetosphere model,we restrict the magnetic obliquity angleβand the rotational inclination angle i so that they satisfy the approximate relationβ+i≈105°.The color excess,extinction,and luminosity are determined to be E_((B-V))=0.745±0.016 mag,A_(V)=2.31±0.05 mag,and log(L/L_(⊙))=3.82±0.1 dex,respectively.Furthermore,we derive the effective temperature as T_(eff)=22±1 kK and the surface gravity as log g=4.00±0.22.The mass M=-7.24_(-1.24)^(+1.75)M_(⊙),radius R=4.44_(-1.93)^(+2.68)R_(⊙),and age τ_(age)=23.62_(-21.97)^(+4.24) Myr are estimated from the Hertzsprung-Russell diagram.展开更多
β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak ...β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.展开更多
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal fie...Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope. This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.展开更多
The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-N...The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).展开更多
In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates ...In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.展开更多
The influences of electron screening (ES) and electron energy correction (EEC) are investigated by superstrong magnetic field (SMF). We also discuss in detail the discrepant factor between our results and those ...The influences of electron screening (ES) and electron energy correction (EEC) are investigated by superstrong magnetic field (SMF). We also discuss in detail the discrepant factor between our results and those of Fushiki, Gudmundsson and Pethick (FGP) in SMF. The results show that SMF has only a slight effect on ES when B 〈 10^9 T on the surfaces of most neutron stars. Whereas for some magnetars, SMF influence ES greatly when B 〉 10^9 T . For instance, due to SMF the ES potential may be increased about 23.6% and the EEC may be increased about 4 orders of magnitude at ρ/μe = 1.0 × 10^6 mol/cm^3 and T9 = 1. On the other hand, the discrepant factor shows that our results are in good agreement with FGP's when B 〈 10^9 T . But the difference will be increased with increasing SMF.展开更多
We study the effect of strong magnetic fields on the structure of neutron star. We find that if the interior field is on the same order as the surface field currently observed, then the influences of the field on the ...We study the effect of strong magnetic fields on the structure of neutron star. We find that if the interior field is on the same order as the surface field currently observed, then the influences of the field on the star's mass and radius are negligible; if the field is as large as that estimated from the scalar virial theorem, then considerable effects will be induced. The maximum mass of the star will be increased substantially while the central density is greatly reduced. The radius of a magnetic star can be larger by about 10% ~ 20% than a nonmagnetic star of the same mass.展开更多
We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the...We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the lowest order constrained vari- ational approach at zero and finite temperatures, and employing AV18 potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of neutron and protoneutron stars. It is found that the equation of state for a neutron star becomes stiffer with an increase of magnetic field and tem- perature. This leads to larger values of the maximum mass and radius for the neutron stars.展开更多
Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on...Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.展开更多
The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to th...The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.展开更多
Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak...Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.展开更多
I present a novel mechanism to boost magnetic field amplification of newly born neutron stars in core collapse supernovae.In this mechanism,that operates in the jittering jets explosion mechanism and comes on top of t...I present a novel mechanism to boost magnetic field amplification of newly born neutron stars in core collapse supernovae.In this mechanism,that operates in the jittering jets explosion mechanism and comes on top of the regular magnetic field amplification by turbulence,the accretion of stochastic angular momentum in core collapse supernovae forms a neutron star with strong initial magnetic fields but with a slow rotation.The varying angular momentum of the accreted gas,which is unique to the jittering jets explosion mechanism,exerts a varying azimuthal shear on the magnetic fields of the accreted mass near the surface of the neutron star.This,I argue,can form an amplifying effect which I term the stochastic omega(Sω) effect.In the common αω dynamo the rotation has constant direction and value,and hence supplies a constant azimuthal shear,while the convection has a stochastic behavior.In the Sω dynamo the stochastic angular momentum is different from turbulence in that it operates on a large scale,and it is different from a regular rotational shear in being stochastic.The basic assumption is that because of the varying direction of the angular momentum axis from one accretion episode to the next,the rotational flow of an accretion episode stretches the magnetic fields that were amplified in the previous episode.I estimate the amplification factor of the Sω dynamo alone to be ≈ 10.I speculate that the Sω effect accounts for a recent finding that many neutron stars are born with strong magnetic fields.展开更多
We report on the near-infrared polarimetric observations of RCW 120 with the 1.4 m IRSF telescope.The starlight polarization of the background stars reveals for the first time the magnetic field of RCW 120.The global ...We report on the near-infrared polarimetric observations of RCW 120 with the 1.4 m IRSF telescope.The starlight polarization of the background stars reveals for the first time the magnetic field of RCW 120.The global magnetic field of RCW 120 is along the direction of 20°,parallel to the Galactic plane.The field strength on the plane of the sky is 100 ± 26 μG.The magnetic field around the eastern shell shows evidence of compression by the H Ⅱ region.The external pressure(turbulent pressure+ magnetic pressure) and the gas density of the ambient cloud are minimum along the direction where RCW 120 breaks out,which explains the observed elongation of RCW 120.The dynamical age of RCW 120,depending on the magnetic field strength,is~1.6 Myr for field strength of100 μG,older than the hydrodynamic estimates.In direction perpendicular to the magnetic field,the density contrast of the western shell is greatly reduced by the strong magnetic field.The strong magnetic field in general reduces the efficiency of triggered star formation,in comparison with the hydrodynamic estimates.Triggered star formation via the "collect and collapse" mechanism could occur in the direction along the magnetic field.Core formation efficiency(CFE) is found to be higher in the southern and eastern shells of RCW 120 than in the infrared dark cloud receiving little influence from the H Ⅱ region,suggesting increase in the CFE related to triggering from ionization feedback.展开更多
Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses are believed to be the progenitors of “super-luminous” Type Ia supernovae according to a hypothesis proposed by some researchers. They th...Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses are believed to be the progenitors of “super-luminous” Type Ia supernovae according to a hypothesis proposed by some researchers. They theorize such a higher mass of the WD due to the presence of a very strong magnetic field inside it. We revisit their first work on magnetic WDs (MWDs) and present our theoretical results that are very different from theirs. The main reason for this difference is in the use of the equation of state (EoS) to make stellar models of MWDs. An electron gas in a magnetic field is Landau quantized and hence, the resulting EoS becomes non-polytropic. By constructing models of MWDs using such an EoS, we highlight that a strong magnetic field inside a WD would make the star super-massive. We have found that our stellar models do indeed fall in the mass range given above. Moreover, we are also able to address an observational finding that the mean mass of MWDs are almost double that of non-magnetic WDs. Magnetic field changes the momentum-space of the electrons which in turn changes their density of states (DOS), and that in turn changes the EoS of matter inside the star. By correlating the magnetic DOS with the non-polytropic EoS, we were also able to find a physical reason behind our theoretical result of super-massive WDs with strong magnetic fields. In order to construct these models, we have considered different equations of state with at most three Landau levels occupied and have plotted our results as mass-radius relations for a particular chosen value of maximum Fermi energy. Our results also show that a multiple Landau-level system of electrons leads to such an EoS that gives multiple branches in the mass-radius relations, and that the super-massive MWDs are obtained when the Landau-level occupancy is limited to just one level. Finally, our theoretical results can be explained solely on the basis of quantum and statistical mechanics that warrant no assumptions regarding stars.展开更多
基金Supported by the National Natural Science Foundation of China though Grants 10173021, 10433030,10773003 and 10778601supported by the Ministry of Science and Technology of the People’s Republic of China through Grant 2007CB815406
文摘We investigate the rotation profile of solar-like stars with magnetic fields. A diffu- sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 tr level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 MG, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.
文摘Today, the origin of the magnetic field of stars and planets is explained by the dynamo effect. Since Cowling’s anti-dynamo theorem has forbidden a purely axisymmetric dynamo, scientists are all convinced today that the fluid flow in the core of a star cannot be laminar, so it is turbulent. However, we will see in this study that the configuration in which the conductive fluid contained in the core of a star is in rapid rotation around an axis of symmetry is the one that best explains the origin of the magnetic field of stars and planets. It also explains why certain types of stars have very intense magnetic fields. Indeed, we will show here that the magnetic field of stars and planets is created by the electric current generated by the rotational movement of charged fluid particles as in an electromagnet. The lines of this magnetic field are channelled by the solid paramagnetic seed which plays the role of magnetic core in the cores of planets and stars. The seed is composed mainly of Iron and Nickel on the planets and of solid helium-3 in the stars. In this work, we will use this model of rapidly rotating fluids to introduce a new way to ionize a neutral gas and maintain it in a plasma state for indefinitely large time scales, to present a new technique for generating very intense magnetic fields, to establish a new magnetic nucleation process and to propose a new type of nuclear fusion reactor in which the plasma is perpetually rapidly rotating.
基金The project supported by National Natural Science Foundation of China under Grant No.10778719the Scientific Research Fund of the Education Department of Sichuan Province under Grant No.2006A079the Science and Technological Foundation of China West Normal University
文摘The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10347008 and 10778719the Scientific Research Fund of the Education Department of Sichuan Province under Grant No.2006A079the Science and Technological Foundation of China West Normal University
文摘This paper shows that superstrong magnetic fields (such as those of magnetars) can increase the energy generation rate many times in the crust of neutron stars. This result undoubtedly not only influences the cooling of neutron stars and the X-ray luminosity observed of neutron stars but also the evolution of neutron stars.
基金funded by the National Natural Science Foundation of China (NSFC, No. 11347108)the Fundamental Research Funds for the Central Universities (No. 2014QC014)the key program project of the Joint Fund of Astronomy by NSFC and the Chinese Academy of Sciences (No. 11178001)
文摘Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibrium and thermal evolution of neutron stars with decaying magnetic fields. We find that the power-law long term decay of the magnetic field slightly affects the deviation from chemical equilibrium and surface temperature. However, the magnetic decay leads to older neutron stars that could have a different surface temperature with the same magnetic field strength. That is, older neutron stars with a low magnetic field (10^8 G) could have a lower temper- ature even with rotochemical heating in operation, which probably explains the lack of other observations on older millisecond pulsars with higher surface temperature, except millisecond pulsar J0437-4715.
基金funded by the National Natural Science Foundation of China (Grant Nos. 11547021, 11347108 and 11003005)
文摘We calculate the mass-radius relationship of quark stars with the magnetized density- dependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively smaller impact on the mass and radius, compared to the force-free configuration, which implies that the geometry of the interior magnetic field is at least as important as the field strength itself when the influ- ence of the strong magnetic field on the mass and radius is assessed.
基金the generous support of the Natural Science Foundation of Xinjiang No.2021D01C075the National Natural Science Foundation of China under grants U2031204,12163005 and 11863005+5 种基金the science research grants from the China Manned Space Project with Nos.CMS-CSST-2021-A08 and CMS-CSST-2021-A10the science research grants from National Key R&D Program of China(2022YFE0126200)National Major Scientific Project built by the Chinese Academy of Sciencesprovided by the National Development and Reform Commissionprovided by the NASA Explorer Programoperated by the Association of Universities for Research in Astronomy,Inc.,under NASA contract NAS 526555。
文摘We first present the multicolor photometry results of the rapidly rotating magnetic star HD 345439 using the Nanshan One-meter Wide-field Telescope.From the photometric observations,we derive a rotational period of 0.7699±0.0014 day.The light curves of HD 345439 are dominated by the double asymmetric S-wave feature that arises from the magnetic clouds.Pulsating behaviors are not observed in Sector 41 of the Transiting Exoplanet Survey Satellite.No evidence is found of the occurrence of centrifugal breakout events neither in the residual flux nor in the systematic variations at the extremum of the light curve.Based on the hypothesis of the Rigidly Rotating Magnetosphere model,we restrict the magnetic obliquity angleβand the rotational inclination angle i so that they satisfy the approximate relationβ+i≈105°.The color excess,extinction,and luminosity are determined to be E_((B-V))=0.745±0.016 mag,A_(V)=2.31±0.05 mag,and log(L/L_(⊙))=3.82±0.1 dex,respectively.Furthermore,we derive the effective temperature as T_(eff)=22±1 kK and the surface gravity as log g=4.00±0.22.The mass M=-7.24_(-1.24)^(+1.75)M_(⊙),radius R=4.44_(-1.93)^(+2.68)R_(⊙),and age τ_(age)=23.62_(-21.97)^(+4.24) Myr are estimated from the Hertzsprung-Russell diagram.
基金Project suoported by the National Natural Science Foundation of China (Grant No 10347008).
文摘β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.
基金Supported by the National Natural Science Foundation of China
文摘Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope. This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.
文摘The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.
基金supported by the Natural Science Foundation of Hainan Province,China (Grant No.109004)the Scientific Research and Foundation of Hainan Provincial Education Department,China (Grant No.Hjkj2010-42)the Special Foundation of Institutions for Higher Education of Sanya (Grant No.YD09047)
文摘The influences of electron screening (ES) and electron energy correction (EEC) are investigated by superstrong magnetic field (SMF). We also discuss in detail the discrepant factor between our results and those of Fushiki, Gudmundsson and Pethick (FGP) in SMF. The results show that SMF has only a slight effect on ES when B 〈 10^9 T on the surfaces of most neutron stars. Whereas for some magnetars, SMF influence ES greatly when B 〉 10^9 T . For instance, due to SMF the ES potential may be increased about 23.6% and the EEC may be increased about 4 orders of magnitude at ρ/μe = 1.0 × 10^6 mol/cm^3 and T9 = 1. On the other hand, the discrepant factor shows that our results are in good agreement with FGP's when B 〈 10^9 T . But the difference will be increased with increasing SMF.
基金STA foundation and the National Natural Science Foundation of China.
文摘We study the effect of strong magnetic fields on the structure of neutron star. We find that if the interior field is on the same order as the surface field currently observed, then the influences of the field on the star's mass and radius are negligible; if the field is as large as that estimated from the scalar virial theorem, then considerable effects will be induced. The maximum mass of the star will be increased substantially while the central density is greatly reduced. The radius of a magnetic star can be larger by about 10% ~ 20% than a nonmagnetic star of the same mass.
基金supported financially by the Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)
文摘We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the lowest order constrained vari- ational approach at zero and finite temperatures, and employing AV18 potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of neutron and protoneutron stars. It is found that the equation of state for a neutron star becomes stiffer with an increase of magnetic field and tem- perature. This leads to larger values of the maximum mass and radius for the neutron stars.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10647116 and 10575140 and the China Postdoctoral Science Foundation under Grant No. 2005037175
文摘Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.
基金National Natural Science Foundation of China under Grant Nos.10647116 and 10575140the China Postdoctoral Science Foundation under Grant No.2005037175
文摘The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.
基金supported by a grant from the Israel Science Foundation
文摘I present a novel mechanism to boost magnetic field amplification of newly born neutron stars in core collapse supernovae.In this mechanism,that operates in the jittering jets explosion mechanism and comes on top of the regular magnetic field amplification by turbulence,the accretion of stochastic angular momentum in core collapse supernovae forms a neutron star with strong initial magnetic fields but with a slow rotation.The varying angular momentum of the accreted gas,which is unique to the jittering jets explosion mechanism,exerts a varying azimuthal shear on the magnetic fields of the accreted mass near the surface of the neutron star.This,I argue,can form an amplifying effect which I term the stochastic omega(Sω) effect.In the common αω dynamo the rotation has constant direction and value,and hence supplies a constant azimuthal shear,while the convection has a stochastic behavior.In the Sω dynamo the stochastic angular momentum is different from turbulence in that it operates on a large scale,and it is different from a regular rotational shear in being stochastic.The basic assumption is that because of the varying direction of the angular momentum axis from one accretion episode to the next,the rotational flow of an accretion episode stretches the magnetic fields that were amplified in the previous episode.I estimate the amplification factor of the Sω dynamo alone to be ≈ 10.I speculate that the Sω effect accounts for a recent finding that many neutron stars are born with strong magnetic fields.
基金supported by the National Key Research & Development Program of China (2017YFA0402702)the general Grant Nos. 11903083, 12173090, U2031202, 11873093, 11873094 from the National Natural Science Foundation of Chinathe science research grants from the China Manned Space Project with No. CMS-CSST2021-B06。
文摘We report on the near-infrared polarimetric observations of RCW 120 with the 1.4 m IRSF telescope.The starlight polarization of the background stars reveals for the first time the magnetic field of RCW 120.The global magnetic field of RCW 120 is along the direction of 20°,parallel to the Galactic plane.The field strength on the plane of the sky is 100 ± 26 μG.The magnetic field around the eastern shell shows evidence of compression by the H Ⅱ region.The external pressure(turbulent pressure+ magnetic pressure) and the gas density of the ambient cloud are minimum along the direction where RCW 120 breaks out,which explains the observed elongation of RCW 120.The dynamical age of RCW 120,depending on the magnetic field strength,is~1.6 Myr for field strength of100 μG,older than the hydrodynamic estimates.In direction perpendicular to the magnetic field,the density contrast of the western shell is greatly reduced by the strong magnetic field.The strong magnetic field in general reduces the efficiency of triggered star formation,in comparison with the hydrodynamic estimates.Triggered star formation via the "collect and collapse" mechanism could occur in the direction along the magnetic field.Core formation efficiency(CFE) is found to be higher in the southern and eastern shells of RCW 120 than in the infrared dark cloud receiving little influence from the H Ⅱ region,suggesting increase in the CFE related to triggering from ionization feedback.
文摘Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses are believed to be the progenitors of “super-luminous” Type Ia supernovae according to a hypothesis proposed by some researchers. They theorize such a higher mass of the WD due to the presence of a very strong magnetic field inside it. We revisit their first work on magnetic WDs (MWDs) and present our theoretical results that are very different from theirs. The main reason for this difference is in the use of the equation of state (EoS) to make stellar models of MWDs. An electron gas in a magnetic field is Landau quantized and hence, the resulting EoS becomes non-polytropic. By constructing models of MWDs using such an EoS, we highlight that a strong magnetic field inside a WD would make the star super-massive. We have found that our stellar models do indeed fall in the mass range given above. Moreover, we are also able to address an observational finding that the mean mass of MWDs are almost double that of non-magnetic WDs. Magnetic field changes the momentum-space of the electrons which in turn changes their density of states (DOS), and that in turn changes the EoS of matter inside the star. By correlating the magnetic DOS with the non-polytropic EoS, we were also able to find a physical reason behind our theoretical result of super-massive WDs with strong magnetic fields. In order to construct these models, we have considered different equations of state with at most three Landau levels occupied and have plotted our results as mass-radius relations for a particular chosen value of maximum Fermi energy. Our results also show that a multiple Landau-level system of electrons leads to such an EoS that gives multiple branches in the mass-radius relations, and that the super-massive MWDs are obtained when the Landau-level occupancy is limited to just one level. Finally, our theoretical results can be explained solely on the basis of quantum and statistical mechanics that warrant no assumptions regarding stars.