期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity 被引量:2
1
作者 You-QinHu Yan-WeiJiang 《Chinese Journal of Astronomy and Astrophysics》 CSCD 北大核心 2001年第1期77-84,共8页
Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper analyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the mag... Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper analyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope, including the height of the rope axis, the half-width of the ropes and the length of the vertical current sheet below the ropes are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity. The implication of this result in solar active phenomena is briefly discussed. 展开更多
关键词 Sun: magnetic fields - Sun: magnetic flux rope - Sun: magnetic helicity
下载PDF
The Pattern of By Deflections Produced from Field-Aligned Currents Earthward of the Activation Source in the Earth’s Magnetosphere
2
作者 Dimitrios V. Sarafopoulos 《International Journal of Geosciences》 2016年第4期479-500,共22页
In this investigation effort, we eventually infer that the overall quadrapole pattern of B<sub>y</sub> deflections, in the vicinity of a source in the Earth’s magnetotail, is most likely due to field alig... In this investigation effort, we eventually infer that the overall quadrapole pattern of B<sub>y</sub> deflections, in the vicinity of a source in the Earth’s magnetotail, is most likely due to field aligned currents (FACs) and not to Hall currents associated with an X-type collisionless reconnection. This categorically expressed statement is based upon sufficient observational evidence tightly associated with our own suggested model and the preceded works of the same author. Using representative events measured by satellite, our main aim is to describe the nature of the fundamental mechanism determining the polarity of the B<sub>y</sub> deflections associated with intense earthward ionplasma flows. A major finding is that we either observe magnetic flux rope (MFR) like structures (that is, entities having all the morphological features of ropes; i.e., a dipolar signature of B<sub>z</sub> occurring simultaneously with peaked B<sub>y</sub> and B<sub>total</sub> deflections) or mere B<sub>y</sub> deflections, however, the sign for all these (B<sub>y</sub>deflections) is always determined by the satellite placement in north (positive) or south (negative) plasma sheet. Therefore, the MFR-like structures located earthward of the source are most likely pseudo-MFRs;there is neither a tubular topology nor an axial magnetic field, the B<sub>y</sub> deflections are produced by FACs. According to the presented model, a fundamental concept is that both ions and electrons are simultaneously accelerated at the source site;in turn, the earthward streaming electrons (ions) form a bifurcated electron (ion) FAC just outside the electron diffusion region-EDR (IDR). In this way, inside the IDR (and earthward of the source) positive (negative) B<sub>y</sub> deflections in north (south) plasma sheet (PS) are produced due to FACs, and not to (inward) Hall currents as in the context of an X-line. Moreover, the ions form an “ion jet” within the IDR, while just outside this region they produce positive (negative) B<sub>y</sub> deflections in north (south) PS caused by ion FACs. The ion jet in the IDR is enveloped by the bifurcated electron FAC. Eventually, although the resulting pattern of B<sub>y</sub> deflections, due to both electron and ion FACs, is apparently the same with that resulting from Hall currents (in the X-line model), the underlying natural processes are, however, radically different. Certainly, the dominant “spatial entity” within the IDR is the ion jet-current (and not the Hall-electron current). Additional implications of the ion jets are also discussed. 展开更多
关键词 magnetic Reconnection magnetic flux Rope in Magnetotail Field-Aligned Currents Plasma Sheet Double Layers
下载PDF
Characteristics and applications of interplanetary coronal mass ejection composition
3
作者 SONG HongQiang YAO Shuo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第11期2171-2187,共17页
In situ measurements of interplanetary coronal mass ejection(ICME)composition,including elemental abundances and charge states of heavy ions,open a new avenue to study coronal mass ejections(CMEs)besides remote-sensin... In situ measurements of interplanetary coronal mass ejection(ICME)composition,including elemental abundances and charge states of heavy ions,open a new avenue to study coronal mass ejections(CMEs)besides remote-sensing observations.The ratios between different elemental abundances can diagnose the plasma origin of CMEs(e.g.,from the corona or chromosphere/photosphere)due to the first ionization potential(FIP)effect,which means elements with different FIPs get fractionated between the photosphere and corona.The ratios between different charge states of a specific element can provide the electron temperature of CMEs in the corona due to the freeze-in effect,which can be used to investigate their eruption process.In this review,we first give an overview of the ICME composition and then demonstrate their applications in investigating some important subjects related to CMEs,such as the origin of filament plasma and the eruption process of magnetic flux ropes.Finally,we point out several important questions that should be addressed further for better utilizing the ICME composition to study CMEs. 展开更多
关键词 coronal mass ejection interplanetary coronal mass ejection elemental abundance ionic charge state magnetic flux rope magnetic cloud FILAMENT FLARE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部