Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inver...Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inverter.The proposed circuit topology,control strategy,and related analysis are presented.The circuit topology of the inverter comprises a quasi-Z-source network with an integrated magnetic inductor,an active clamp circuit,a three-phase inverter bridge,and an output LC filter,all of which are connected in series.An improved 12-sector space vector modulation scheme is proposed based on the root-mean-square value of the voltage and the instantaneous value of the current.Furthermore,analyses of the inverter voltage transmission ratio,resonant process,and parametric design guidelines for integrated magnetic inductor and zero-voltage switching conditions are presented.Experimental results on a 1-kVA prototype inverter demonstrate that the proposed inverter exhibits a higher transmission ratio and efficiency than existing inverters;thus,the proposed inverter would have broad prospects in low-voltage DC-AC applications.展开更多
基金the National Natural Science Foundation of China(Grant No.51537001)Fund of“Taishan Scholar”Climbing Plan of Shandong Province,China。
文摘Herein,we propose a novel three-phase quasi-Z-source inverter with a high voltage transmission ratio to address challenges such as high switching loss and sizeable magnetic components in the basic quasi-Z-source inverter.The proposed circuit topology,control strategy,and related analysis are presented.The circuit topology of the inverter comprises a quasi-Z-source network with an integrated magnetic inductor,an active clamp circuit,a three-phase inverter bridge,and an output LC filter,all of which are connected in series.An improved 12-sector space vector modulation scheme is proposed based on the root-mean-square value of the voltage and the instantaneous value of the current.Furthermore,analyses of the inverter voltage transmission ratio,resonant process,and parametric design guidelines for integrated magnetic inductor and zero-voltage switching conditions are presented.Experimental results on a 1-kVA prototype inverter demonstrate that the proposed inverter exhibits a higher transmission ratio and efficiency than existing inverters;thus,the proposed inverter would have broad prospects in low-voltage DC-AC applications.