期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deep Seismogenic Environment in the Southern Section of the Longmenshan Fault Zone on the Eastern Margin of the Tibetan Plateau and Lushan M_s 7.0 Earthquake 被引量:4
1
作者 LI Dahu DING Zhifeng +2 位作者 ZHAN Yan WU Pingping YE Qingdong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期519-530,共12页
The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct ... The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct P waves arrival times. We applied the tomographic method to inverse the characteristics of the velocity structure for the three-dimensional (3D) P wave in the mid-upper crust of the seismic source region of the Lushan earthquake. The imaging results were combined with the apparent magnetization inversion and magnetotelluric (MT) sounding retest data to comprehensively study the causes of the deep seismogenic environment in the southern section of the Longmenshan fault zone and explore the formation of the Lushan earthquake. Research has shown that there are obvious differences in velocity structure and magnetic distribution between the southern and northern sections of the Longmenshan fault zone. The epicenter of the Lushan earthquake is located near the boundary of the high and low-velocity anomalies and favorable for a high-velocity section. Moreover, at the epicenter of the Lushan earthquake located on the magnetic dome boundary of Ya'an, the development of high velocity and magnetic solid medium favors the accumulation and release of strain energy. Low- velocity anomalies are distributed underneath the are of seismogenic origin, The inversion results of the MT retest data after the April 20th Lushan earthquake also indicate that there a high-conductor anomaly occurs under the area of seismogenic origin of the Lushan earthquake, Therefore, we speculated that the presence of a high-conductivity anomaly and low-velocity anomaly underneath the seismogenic body of the Lushan earthquake could be related to the existence of fluids. The role of fluids caused the weakening of the seismogenic layer inside the mid-upper crust and resulted in a seismogenic fault that was prone to rupture and pIayed a triggering role in the Lushan earthquake. 展开更多
关键词 The Longmenshan fault zone Lushan earthquake the three-dimensional velocitystructure the apparent magnetization inversion magnetotelluric sounding
下载PDF
Influences of magnetic field on the coexistence of diquark and chiral condensates in the Nambu-Jona-Lasinio model with axial anomaly
2
作者 张小兵 彭富平 +1 位作者 吴云奔 张一 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第11期65-73,共9页
In this paper,we study the influences of magnetic fields on the coexistence of diquark and chiral condensates in an extended Nambu-Jona-Lasinio model with QCD axial anomaly,as it relates to color-flavor-locked quark m... In this paper,we study the influences of magnetic fields on the coexistence of diquark and chiral condensates in an extended Nambu-Jona-Lasinio model with QCD axial anomaly,as it relates to color-flavor-locked quark matter.Due to the coupling of rotated-charged quarks to magneticfields,diquark condensates become split,and the coexistence region is thus superseded in favor of a specific diquark Bose-Einstein condensation(BEC),denoted as the BECIphase.For strong magnetic fields,we find that the BECItransition is pushed to larger quark chemical potentials.The effect of magnetic catalysis tends to disrupt the BEC-BCS(Bardeen-Cooper-Schrieffer)crossover predicted in previous works.For intermediate fields,the effect of inverse magnetic catalysis is observed,and the axial-anomaly-induced phase structure is essentially unchanged. 展开更多
关键词 Nambu-Jona-Lasinio model diquark Bose-Einstein condensation magnetic catalysis inverse magnetic catalysis axial-anomaly coexistence of diquark and chiral condensates magnetic field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部