The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), ...The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.展开更多
Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of eff...Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.展开更多
Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard g...Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.展开更多
Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out unde...Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.展开更多
The two-dimensional(2D)magnets provide novel opportunities for understanding magnetism and investigating spin related phenomena in several atomic thickness.Multiple features of 2D magnets,such as critical temperatures...The two-dimensional(2D)magnets provide novel opportunities for understanding magnetism and investigating spin related phenomena in several atomic thickness.Multiple features of 2D magnets,such as critical temperatures,magnetoelectric/magneto-optic responses,and spin configurations,depend on the basic magnetic terms that describe various spins interactions and cooperatively determine the spin Hamiltonian of studied systems.In this review,we present a comprehensive survey of three types of basic terms,including magnetic anisotropy that is intimately related with longrange magnetic order,exchange coupling that normally dominates the spin interactions,and Dzyaloshinskii–Moriya interaction(DMI)that favors the noncollinear spin configurations,from the theoretical aspect.We introduce not only the physical features and origin of these crucial terms in 2D magnets but also many correlated phenomena,which may lead to the advance of 2D spintronics.展开更多
The effect of exchange-coupling interaction on the effective anisotropy and its varying tendency in nanocrystalline single-phase NdFeB permanent magnetic material have been investigated. The results show that the exch...The effect of exchange-coupling interaction on the effective anisotropy and its varying tendency in nanocrystalline single-phase NdFeB permanent magnetic material have been investigated. The results show that the exchange-coupling interaction between grains makes the effective anisotropy of material, Keff, decrease with the reduction of grain size. The variation of Keff is basically the same as that of coercivity. The decrease in effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline single-phase NdFeB permanent magnetic material. In order to get high anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent material, the grain size should be larger than 35 nm.展开更多
Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperatur...Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperature-dependent behaviour of the magnetic susceptibility of these complexes and a corresponding program for fitting the experimental results has been set up on a VAX 11/785 computer. Conclusions can be drawn that the three complexes studied are all anti-ferromagnetically coupled with coupling constants -4. 4 , -115. 2 , and - 8. 4 cm ̄(-1) for Ⅴ(Ⅳ) . Co(Ⅱ) ,and Mn(Ⅲ) complexes, respectively.展开更多
Taking Nd2Fe14B/α-Fe as example, the exchange-coupling interactions between magnetically soft and hard grains in nanocomposite permanent materials and their effects on the effective anisotropy of materials were inves...Taking Nd2Fe14B/α-Fe as example, the exchange-coupling interactions between magnetically soft and hard grains in nanocomposite permanent materials and their effects on the effective anisotropy of materials were investigated. The calculation results expressed that the exchange-coupling interactions are enhanced with the reduction of grain size, and the effective anisotropy of materials decreases with the reduction of gram size and the increase of magnetically soft phase component. The remanence and the effective anisotropy of materials possess the opposite variation trend with the change of grain size and phase ratio. The mean grain size should be in the range of 10-15 nm and the ratio of soft phase should be less than 50% for getting the magnet with high energy product.展开更多
Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interacti...Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.展开更多
The observed magnetic data for two isosceles tricobalt(II) complexes have been successfully analyzed, considering the axial distortion around each cobalt(II) ion, the local spin-orbit coupling, the anisotropic exchang...The observed magnetic data for two isosceles tricobalt(II) complexes have been successfully analyzed, considering the axial distortion around each cobalt(II) ion, the local spin-orbit coupling, the anisotropic exchange interactions, and the intermolecular exchange interactions. The complexes each contains two types of octahedral high-spin cobalt(II) ions (CoA and CoB) in the shape of an isosceles triangle (CoA1–CoB–CoA2), and the contribution of the orbital angular momentum is significant. The exchange interaction between the CoA and CoB ions is practically negligible (J = ~ 0), whereas the interaction between the CoA1 and CoA2 ions is ferromagnetic (J’ > 0) for both complexes.展开更多
Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstruc...Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstructure and the magnetic properties of films were influenced greatly by the bath pH. At the bath pH 8.06, the grain size and coercivity of the films reach maximuml while the squareness (Mr/Ms) of MH curves reaches minimum. The Henkel plots indicates that the exchange-coupling interaction is very weak at this pH, which may be caused by phase-separation and large grain size, and then results in the lowest squareness. At pH above 8.5, obvious exchange-coupling interaction is observed because of the inexistence of phase-separation and the refinement of grain size.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.10074005)
文摘The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.
基金Project supported by National‘863’Project (2002AA324050 2002AA302602) and Natural Science Foundation of China(50371046) and Doctoral Foundation of China (20040422014)
文摘Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.
文摘Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.
文摘Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.
基金the National Key R&D Program of China(Grant No.2022YFA1405102)the National Natural Science Foundation of China(Grant Nos.11874059 and 12174405)+3 种基金he Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-7021)Ningbo Key Scientific and Technological Project(Grant No.2021000215)“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province under Grant 2022C01053,Zhejiang Provincial Natural Science Foundation(Grant No.LR19A040002)Beijing National Laboratory for Condensed Matter Physics(Grant No.2021000123).
文摘The two-dimensional(2D)magnets provide novel opportunities for understanding magnetism and investigating spin related phenomena in several atomic thickness.Multiple features of 2D magnets,such as critical temperatures,magnetoelectric/magneto-optic responses,and spin configurations,depend on the basic magnetic terms that describe various spins interactions and cooperatively determine the spin Hamiltonian of studied systems.In this review,we present a comprehensive survey of three types of basic terms,including magnetic anisotropy that is intimately related with longrange magnetic order,exchange coupling that normally dominates the spin interactions,and Dzyaloshinskii–Moriya interaction(DMI)that favors the noncollinear spin configurations,from the theoretical aspect.We introduce not only the physical features and origin of these crucial terms in 2D magnets but also many correlated phenomena,which may lead to the advance of 2D spintronics.
基金the National'863'Project of China(Grant No.2002AA324050)the National Natural Science Foundation of China(Grant Nos.9971026)the Nature Science Foundation of Shandong Province(Grant No.Y2000F10)
文摘The effect of exchange-coupling interaction on the effective anisotropy and its varying tendency in nanocrystalline single-phase NdFeB permanent magnetic material have been investigated. The results show that the exchange-coupling interaction between grains makes the effective anisotropy of material, Keff, decrease with the reduction of grain size. The variation of Keff is basically the same as that of coercivity. The decrease in effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline single-phase NdFeB permanent magnetic material. In order to get high anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent material, the grain size should be larger than 35 nm.
文摘Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperature-dependent behaviour of the magnetic susceptibility of these complexes and a corresponding program for fitting the experimental results has been set up on a VAX 11/785 computer. Conclusions can be drawn that the three complexes studied are all anti-ferromagnetically coupled with coupling constants -4. 4 , -115. 2 , and - 8. 4 cm ̄(-1) for Ⅴ(Ⅳ) . Co(Ⅱ) ,and Mn(Ⅲ) complexes, respectively.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59971026)the Science Foundation of Shandong Province (Grant No. Y2000F10).
文摘Taking Nd2Fe14B/α-Fe as example, the exchange-coupling interactions between magnetically soft and hard grains in nanocomposite permanent materials and their effects on the effective anisotropy of materials were investigated. The calculation results expressed that the exchange-coupling interactions are enhanced with the reduction of grain size, and the effective anisotropy of materials decreases with the reduction of gram size and the increase of magnetically soft phase component. The remanence and the effective anisotropy of materials possess the opposite variation trend with the change of grain size and phase ratio. The mean grain size should be in the range of 10-15 nm and the ratio of soft phase should be less than 50% for getting the magnet with high energy product.
基金Project supported by the Nanocompound Rare Earth Permanent Magnetic Material Research(BG2004033)National KeyProject for Basic Research(2005CB623605)
文摘Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.
文摘The observed magnetic data for two isosceles tricobalt(II) complexes have been successfully analyzed, considering the axial distortion around each cobalt(II) ion, the local spin-orbit coupling, the anisotropic exchange interactions, and the intermolecular exchange interactions. The complexes each contains two types of octahedral high-spin cobalt(II) ions (CoA and CoB) in the shape of an isosceles triangle (CoA1–CoB–CoA2), and the contribution of the orbital angular momentum is significant. The exchange interaction between the CoA and CoB ions is practically negligible (J = ~ 0), whereas the interaction between the CoA1 and CoA2 ions is ferromagnetic (J’ > 0) for both complexes.
基金the National Natural Science foundation of China under grant No.50572083.
文摘Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstructure and the magnetic properties of films were influenced greatly by the bath pH. At the bath pH 8.06, the grain size and coercivity of the films reach maximuml while the squareness (Mr/Ms) of MH curves reaches minimum. The Henkel plots indicates that the exchange-coupling interaction is very weak at this pH, which may be caused by phase-separation and large grain size, and then results in the lowest squareness. At pH above 8.5, obvious exchange-coupling interaction is observed because of the inexistence of phase-separation and the refinement of grain size.