In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A serie...In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization.展开更多
Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of...Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT).展开更多
Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. According to experimental results, in the early stage of fatigue, the magnetic signal and the d...Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. According to experimental results, in the early stage of fatigue, the magnetic signal and the dislocation density rapidly increase; while in the middle stage, the magnetic signal gradually increases, the dislocation density remains steady, and only the dislocation structure develops. On the other hand, in the later stage, the magnetic signal once again increases rapidly, the dislocation structure continues to develop, and microscopic cracks are formed. Analysis reveals that the dislocations block the movement of the domain wall, and the area of dislocation accumulation thus becomes an internal magnetic source and scatters a field outward. In addition, the magnetic memory field strengthens with increasing dislocation density and complexity of the dislocation structure. Accordingly, the dislocation pinning factor related with the dislocation density and the dislocation structure has been proposed to characterize the effect of dislocations on the magnetic memory signal. The magnetic signal strengthens with an increase in the dislocation pinning factor.展开更多
To confirm whether Magnetic Memory Method can be used to evaluate the fatigue damage of ferromagnetic part or not,this paper stated the principle of magnetic memory method.Also, the relationship between testing parame...To confirm whether Magnetic Memory Method can be used to evaluate the fatigue damage of ferromagnetic part or not,this paper stated the principle of magnetic memory method.Also, the relationship between testing parameter of magnetic memory method and fatigue damage was analyzed based on the experiment. The results show that magnetic memory method can be used to evaluate the fatigue damage represented by stress concentration. However, the relationship between the parameter of magnetic memory method and fatigue damage still needs to be studied.展开更多
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies...In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.展开更多
To evaluate brain involvement in quiescent Crohn’s disease (CD) patients with fatigue using quantitative magnetic resonance imaging (MRI).METHODSMultiple MRI techniques were used to assess cerebral changes in 20 quie...To evaluate brain involvement in quiescent Crohn’s disease (CD) patients with fatigue using quantitative magnetic resonance imaging (MRI).METHODSMultiple MRI techniques were used to assess cerebral changes in 20 quiescent CD patients with fatigue (defined with at least 6 points out of an 11-point numeric rating scale compared with 17 healthy age and gender matched controls without fatigue. Furthermore, mental status was assessed by cognitive functioning, based on the neuropsychological inventory including the different domains global cognitive functioning, memory and executive functioning and in addition mood and quality of life scores. Cognitive functioning and mood status were correlated with MRI findings in the both study groups.RESULTSReduced glutamate + glutamine (Glx = Glu + Gln) concentrations (P = 0.02) and ratios to total creatine (P = 0.02) were found in CD patients compared with controls. Significant increased Cerebral Blood Flow (P = 0.05) was found in CD patients (53.08 ± 6.14 mL/100 g/min) compared with controls (47.60 ± 8.62 mL/100 g/min). CD patients encountered significantly more depressive symptoms (P < 0.001). Cognitive functioning scores related to memory (P = 0.007) and executive functioning (P = 0.02) were lower in CD patients and both scores showed correlation with depression and anxiety. No correlation was found subcortical volumes between CD patients and controls in the T<sub>1</sub>-weighted analysis. In addition, no correlation was found between mental status and MRI findings.CONCLUSIONThis work shows evidence for perfusion, neurochemical and mental differences in the brain of CD patients with fatigue compared with healthy controls.展开更多
This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the ...This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.展开更多
To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in ...To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in this paper. The brain functional networks of normal state, mental fatigue state and stimulated state were constructed and the characteristic parameters were comparatively studied based on the complex network theory. The results showed that the connection of the network was enhanced by stimulating the HT7, LI4 and PC8 acupoint. In conclusion, magnetic stimulation at acupoints can effectively relieve mental fatigue.展开更多
The purpose of this study was to assess the effects of reducing driving fatigue with magnitopuncture stimuli on Dazhui (DU14) point and Neiguan (PC6) points using heart rate (HR), reaction time (RT) testing, critical ...The purpose of this study was to assess the effects of reducing driving fatigue with magnitopuncture stimuli on Dazhui (DU14) point and Neiguan (PC6) points using heart rate (HR), reaction time (RT) testing, critical flicker fusion frequency (CFF) and subjective evaluation. Twenty healthy subjects were randomly divided into two groups: A-group (study group) and B-group (control group). All subjects were required to be well rested before the experiment. The subjects were engaged in high speed driving at a constant vehicle velocity of 80 km/h continuously for three hours on a test course simulating an expressway. During the driving magnitopunctures were applied to the Dazhui (DU14) point and Neiguan (PC6) points for the A-group when the subject performed the task for two and half hours, and for the B-group magnitopunctures were applied to non-acupuncture points at the same time session. In this study RT exbited a significant delay in B-group (P<0.01) but no found in A-group after the driving task. CFF and subjective evaluation also exhibited significant differences between the two groups after the driving task (P<0.05). The findings showed that magnitopuncture stimuli on Dazhui (DU14) point and Neiguan (PC6) points could reduce the effects of driving fatigue.展开更多
Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (137...Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.展开更多
The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises fro...The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.展开更多
Static tensile test and tensile-tensile fatigue test of medium carbon steel sheet specimens with surface crack precut were performed on MTS810 hydraulic testing machine to clear the meaning of the point of Hp(y) value...Static tensile test and tensile-tensile fatigue test of medium carbon steel sheet specimens with surface crack precut were performed on MTS810 hydraulic testing machine to clear the meaning of the point of Hp(y) value zero. Magnetic memory signals were measured during the test process. The results show that only one point of Hp(y) zero value exists in all measured magnetic signal curves during the loading process, which should be a sign of intersection of positive-negative magnetic poles after magnetic ordered state appears and does not indicate the position of surface crack precut. The analysis shows that the surface crack precut can not interrupt the magnetic ordered state occurred during the test completely, hence its Hp(y) value is not zero. However, the crack extending to a penetrated defect at the instant of specimen′s fracture leads to the discontinuance of magnetic ordered state.展开更多
The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with r...The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.展开更多
In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue t...In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone.展开更多
Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further researc...Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further research to evaluate stress concentration quantitatively due to ambiguous physical mechanism, though it has potential to detect early defects in ferromagnetic materials. Mild Q235 steel defective specimens in demagnetization state were loaded in tension up to visible necking, with magnetic memory signals measurement made at increasing stress levels. Magnetic signals varied greatly under first several loadings and subsequently tended to stability in the elastic region, which showed that the magnetization always approaches the anhysteretic magnetization curve and was explained by the theory of magnetomechanical effect. In the plastic stage, an abnormal wave occurred in the stress concentration zone and its height value was sensitive to plastic deformation levels and dependent on the distance between the probe and defect, in accordance with the simulation results based on the magnetic dipole model. Different magnetic signal characteristics in the elastic-plastic region indicate that the magnetic memory technique can identify macroyielding and early damage, which is of profound significance for ensuring safe operation of equipment in service.展开更多
A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can...A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained.展开更多
The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bar...The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bars with rectangular holes to obtain various stress concentration factors. The tangential component Hp(x) of MMM signals and its related magnetic characteristic parameters throughout the loading process were presented and analyzed. It is found that the tangential component Hp(x) is sensitive to the abnormal magnetic changes caused by the local stress concentration in the defect area. The minimum magnetic field is positively correlated to the magnitude of the load and the distance from the notch. The tangential magnetic stress concentration factor presents good numerical stability during the entire loading process, and can be used to evaluate the stress concentration factor. The results obtained will be a complement to the MMM technique.展开更多
This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy...This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.展开更多
In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and...In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process. The influencing factors of metal magnetic memory signals and the relationship between axial applied load and signals were analyzed. The fracture and microstructure of the specimens were observed. The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load. The microstructure of Q235 steel is ferrite and perlite, whereas that of 18CrNiWA steel is bainite and low-carbon martensite. The fracture of these two kinds of specimens is ductile rupture; carbon content of specimen materials and dislocation glide give much contribution to the characteristics of magnetic curves.展开更多
A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and st...A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.展开更多
基金Projects(11072056, 10772061) supported by the National Natural Science Foundation of ChinaProject(A200907) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(20092322120001) supported by the PhD Programs Foundations of Ministry of Education of China
文摘In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization.
基金Projects(50975283,50975287)supported by the National Natural Science Foundation of ChinaProject(2011CB013401)supported by the National Basic Research Program,China
文摘Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT).
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-13-022A)
文摘Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. According to experimental results, in the early stage of fatigue, the magnetic signal and the dislocation density rapidly increase; while in the middle stage, the magnetic signal gradually increases, the dislocation density remains steady, and only the dislocation structure develops. On the other hand, in the later stage, the magnetic signal once again increases rapidly, the dislocation structure continues to develop, and microscopic cracks are formed. Analysis reveals that the dislocations block the movement of the domain wall, and the area of dislocation accumulation thus becomes an internal magnetic source and scatters a field outward. In addition, the magnetic memory field strengthens with increasing dislocation density and complexity of the dislocation structure. Accordingly, the dislocation pinning factor related with the dislocation density and the dislocation structure has been proposed to characterize the effect of dislocations on the magnetic memory signal. The magnetic signal strengthens with an increase in the dislocation pinning factor.
基金This project is supported by Natural Science Foundation of China (Grant No. 50235030)
文摘To confirm whether Magnetic Memory Method can be used to evaluate the fatigue damage of ferromagnetic part or not,this paper stated the principle of magnetic memory method.Also, the relationship between testing parameter of magnetic memory method and fatigue damage was analyzed based on the experiment. The results show that magnetic memory method can be used to evaluate the fatigue damage represented by stress concentration. However, the relationship between the parameter of magnetic memory method and fatigue damage still needs to be studied.
基金supported by the CRRC Zhuzhou Institute Company Ltd.and in part by Key R&D projects in Hunan+1 种基金ChinaNo.2022GK2062。
文摘In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.
文摘To evaluate brain involvement in quiescent Crohn’s disease (CD) patients with fatigue using quantitative magnetic resonance imaging (MRI).METHODSMultiple MRI techniques were used to assess cerebral changes in 20 quiescent CD patients with fatigue (defined with at least 6 points out of an 11-point numeric rating scale compared with 17 healthy age and gender matched controls without fatigue. Furthermore, mental status was assessed by cognitive functioning, based on the neuropsychological inventory including the different domains global cognitive functioning, memory and executive functioning and in addition mood and quality of life scores. Cognitive functioning and mood status were correlated with MRI findings in the both study groups.RESULTSReduced glutamate + glutamine (Glx = Glu + Gln) concentrations (P = 0.02) and ratios to total creatine (P = 0.02) were found in CD patients compared with controls. Significant increased Cerebral Blood Flow (P = 0.05) was found in CD patients (53.08 ± 6.14 mL/100 g/min) compared with controls (47.60 ± 8.62 mL/100 g/min). CD patients encountered significantly more depressive symptoms (P < 0.001). Cognitive functioning scores related to memory (P = 0.007) and executive functioning (P = 0.02) were lower in CD patients and both scores showed correlation with depression and anxiety. No correlation was found subcortical volumes between CD patients and controls in the T<sub>1</sub>-weighted analysis. In addition, no correlation was found between mental status and MRI findings.CONCLUSIONThis work shows evidence for perfusion, neurochemical and mental differences in the brain of CD patients with fatigue compared with healthy controls.
文摘This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.
文摘To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in this paper. The brain functional networks of normal state, mental fatigue state and stimulated state were constructed and the characteristic parameters were comparatively studied based on the complex network theory. The results showed that the connection of the network was enhanced by stimulating the HT7, LI4 and PC8 acupoint. In conclusion, magnetic stimulation at acupoints can effectively relieve mental fatigue.
文摘The purpose of this study was to assess the effects of reducing driving fatigue with magnitopuncture stimuli on Dazhui (DU14) point and Neiguan (PC6) points using heart rate (HR), reaction time (RT) testing, critical flicker fusion frequency (CFF) and subjective evaluation. Twenty healthy subjects were randomly divided into two groups: A-group (study group) and B-group (control group). All subjects were required to be well rested before the experiment. The subjects were engaged in high speed driving at a constant vehicle velocity of 80 km/h continuously for three hours on a test course simulating an expressway. During the driving magnitopunctures were applied to the Dazhui (DU14) point and Neiguan (PC6) points for the A-group when the subject performed the task for two and half hours, and for the B-group magnitopunctures were applied to non-acupuncture points at the same time session. In this study RT exbited a significant delay in B-group (P<0.01) but no found in A-group after the driving task. CFF and subjective evaluation also exhibited significant differences between the two groups after the driving task (P<0.05). The findings showed that magnitopuncture stimuli on Dazhui (DU14) point and Neiguan (PC6) points could reduce the effects of driving fatigue.
基金Projects (50771037, 50371020) supported by the National Natural Science Foundation of ChinaProject (2011B090400485) supported by the Combination Project for Guangdong Province and the Ministry of Education, China
文摘Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.
基金Project (1253-NCET-009) supported by Program for New Century Excellent Talents in Heilongjiang Provincial University,ChinaProject (1251G022) supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProjects (50901026,51301054) supported by the National Natural Science Foundation of China
文摘The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.
基金This work was financially supported by the National Natural Science Foundation of China (No.50235030, 50505052).
文摘Static tensile test and tensile-tensile fatigue test of medium carbon steel sheet specimens with surface crack precut were performed on MTS810 hydraulic testing machine to clear the meaning of the point of Hp(y) value zero. Magnetic memory signals were measured during the test process. The results show that only one point of Hp(y) zero value exists in all measured magnetic signal curves during the loading process, which should be a sign of intersection of positive-negative magnetic poles after magnetic ordered state appears and does not indicate the position of surface crack precut. The analysis shows that the surface crack precut can not interrupt the magnetic ordered state occurred during the test completely, hence its Hp(y) value is not zero. However, the crack extending to a penetrated defect at the instant of specimen′s fracture leads to the discontinuance of magnetic ordered state.
基金This work was supported by the National Natural Science Foundation of China under grant No.50177019by the Education Department of China under grant No.20040142004.
文摘The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.
文摘In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. A200907)Specialized Research Fundfor the Doctoral Program of Higher Education of China(Grant No.20092322120001)
文摘Detecting stress concentration, especially critical stress state leading to structure damage or failure, is one of the most important tasks of equipment diagnosis. Metal magnetic memory technique needs further research to evaluate stress concentration quantitatively due to ambiguous physical mechanism, though it has potential to detect early defects in ferromagnetic materials. Mild Q235 steel defective specimens in demagnetization state were loaded in tension up to visible necking, with magnetic memory signals measurement made at increasing stress levels. Magnetic signals varied greatly under first several loadings and subsequently tended to stability in the elastic region, which showed that the magnetization always approaches the anhysteretic magnetization curve and was explained by the theory of magnetomechanical effect. In the plastic stage, an abnormal wave occurred in the stress concentration zone and its height value was sensitive to plastic deformation levels and dependent on the distance between the probe and defect, in accordance with the simulation results based on the magnetic dipole model. Different magnetic signal characteristics in the elastic-plastic region indicate that the magnetic memory technique can identify macroyielding and early damage, which is of profound significance for ensuring safe operation of equipment in service.
基金supported by the National Natural Science Foundation of China (Nos.10772021 and 10972027)
文摘A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained.
基金Funded by the Zhejiang Provincial Natural Science Foundation of China(LZ12E08003)the Fundamental Research Funds for the Central Universities,China(2015QNA4028)
文摘The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bars with rectangular holes to obtain various stress concentration factors. The tangential component Hp(x) of MMM signals and its related magnetic characteristic parameters throughout the loading process were presented and analyzed. It is found that the tangential component Hp(x) is sensitive to the abnormal magnetic changes caused by the local stress concentration in the defect area. The minimum magnetic field is positively correlated to the magnitude of the load and the distance from the notch. The tangential magnetic stress concentration factor presents good numerical stability during the entire loading process, and can be used to evaluate the stress concentration factor. The results obtained will be a complement to the MMM technique.
文摘This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.
基金Projects(50235030, 50505052) supported by the National Natural Science Foundation of China
文摘In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process. The influencing factors of metal magnetic memory signals and the relationship between axial applied load and signals were analyzed. The fracture and microstructure of the specimens were observed. The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load. The microstructure of Q235 steel is ferrite and perlite, whereas that of 18CrNiWA steel is bainite and low-carbon martensite. The fracture of these two kinds of specimens is ductile rupture; carbon content of specimen materials and dislocation glide give much contribution to the characteristics of magnetic curves.
基金the National Natural Science Foundation of China (No. 50271002) New Century Program for Excellent Talents of Ministry of Education of China (No. 04-0165).
文摘A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.