期刊文献+
共找到1,324篇文章
< 1 2 67 >
每页显示 20 50 100
Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment
1
作者 Rui Wang He Qi +1 位作者 Haijiao Zheng Qiong Jia 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期222-226,共5页
Metal-organic frameworks(MOFs)combined with specific ligands are highly adaptable smart materials that can respond to external and physiological stimuli.In this study,we introduced a pyridinyl zwitterionic ligand with... Metal-organic frameworks(MOFs)combined with specific ligands are highly adaptable smart materials that can respond to external and physiological stimuli.In this study,we introduced a pyridinyl zwitterionic ligand with light/pH dual response into magnetic MOF composite(Fe_(3)O_(4)@ZW-MOF)for enrichment of phosphorylated peptides for the first time.The introduction of the developed ligand gives MOF material dual response properties.Light stimulation affects the generation/disappearance of free radicals of the pyridine derivative,resulting in a change in the charge gradient of the zwitterion,and zwitterion can also regulate the p H of the solution by adding acid or base.Therefore,the reversible capture and release of phosphorylated peptides can be easily achieved by adjusting light and pH.The established phosphorylated peptide enrichment platform exhibits high sensitivity(detection limit of 1 fmol),high selectivity(β-casein:BSA,1:1000),and good reusability(7 cycles).In addition,the method was applied to the enrichment of phosphorylated peptides in complex systems(non-fat milk and human serum),demonstrating the feasibility of this method for phosphoproteom analysis.In conclusion,the synthesized Fe_(3)O_(4)@ZW-MOF is a promising MOF material,which provides the possibility to advance the application of responsive MOFs materials in proteomics. 展开更多
关键词 LIGHT PH Dual-response metal-organic frameworks Phosphorylated peptide
原文传递
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
2
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 metal-organic frameworks MXene NANOCELLULOSE Electromagnetic shielding Photothermal conversion
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:1
3
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
4
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
5
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Temperature-feedback two-photon-responsive metal-organic frameworks for efficient photothermal therapy
6
作者 Xianshun Sun Xin Lu +4 位作者 Wenyao Duan Bo Li Yupeng Tian Dandan Li Hongping Zhou 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期53-59,I0011,共8页
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi... The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT. 展开更多
关键词 metal-organic framework TWO-PHOTON temperature feedback photothermal therapy chemodynamic therapy
下载PDF
Photophysics of metal-organic frameworks:A brief overview
7
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
Metal-organic-framework-derived copper-based catalyst for multicomponent C-S coupling reaction
8
作者 Lixin Chen Hui Zhang +1 位作者 Linxi Hou Xin Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期1-8,共8页
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o... Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction. 展开更多
关键词 Design Copper-based metal-organic frameworks (Cu-MOFs) Adsorption C-S coupling reaction Multiphase reaction
下载PDF
Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
9
作者 Ruotong Li Liang Pan +6 位作者 Ziyu Peng Ningning Zhao Zekun Zhang Jing Zhu Lei Dai Ling Wang Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期213-220,I0006,共9页
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo... Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs. 展开更多
关键词 Aqueous zinc ion batteries Interfacial behavior metal-organic framework Sulfonic acid group SEPARATOR
下载PDF
Metal-organic framework-derived porous carbon for the advanced aqueous zinc-ion hybrid capacitor
10
作者 LIU Wei-fang HU Zi-han ZHANG Qi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2268-2279,共12页
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ... Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage. 展开更多
关键词 zinc ion hybrid capacitor CATHODE metal-organic framework(ZIF-8) KOH activation
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
11
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption 被引量:8
12
作者 Xiaogu Huang Jiawen Wei +5 位作者 Yunke Zhang BinBin Qian Qi Jia Jun Liu Xiaojia Zhao Gaofeng Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期16-31,共16页
The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal–organic frameworks(MOFs)and graphene oxide(GO)building blocks that exhibit an ultralow density and unif... The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal–organic frameworks(MOFs)and graphene oxide(GO)building blocks that exhibit an ultralow density and uniformly distributed MOFs on GO sheets is important for various applications.Herein,we report a facile route for synthesizing MOF/reduced GO(rGO)aerogels based on the gelation of GO,which is directly initiated using MOF crystals.Free metal ions exposed on the surface of MIL-88A nanorods act as linkers that bind GO nanosheets to a three-dimensional porous network via metal–oxygen covalent or electrostatic interactions.The MOF/rGOderived magnetic and dielectric aerogels Fe_(3)O_(4)@C/rGO and Ni-doped Fe_(3)O_(4)@C/rGO show notable microwave absorption(MA)performance,simultaneously achieving strong absorption and broad bandwidth at low thickness of 2.5(-58.1 dB and 6.48 GHz)and 2.8 mm(-46.2 dB and 7.92 GHz)with ultralow filling contents of 0.7 and 0.6 wt%,respectively.The microwave attenuation ability of the prepared aerogels is further confirmed via a radar cross-sectional simulation,which is attributed to the synergistic effects of their hierarchically porous structures and heterointerface engineering.This work provides an effective pathway for fabricating hierarchically porous MOF/rGO hybrid aerogels and offers magnetic and dielectric aerogels for ultralight MA. 展开更多
关键词 magnetic and dielectric aerogels metal-organic frameworks Gelation mechanism Microwave absorption Radar cross-sectional simulation
下载PDF
Synthesis, Crystal Structure, and Magnetic Properties of a Co Metal-organic Framework with Mixed Dicarboxylate and Tricarboxylate Ligands 被引量:1
13
作者 LI Wen-Bin GAO Zhu-Qing GU Jin-Zhong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第2期257-263,共7页
One new mixed-ligand coordination polymer,namely[Co2(btc)(bpdc)(0.5)(py)3]n(1),was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid(H3btc) as a main building block,along with two auxili... One new mixed-ligand coordination polymer,namely[Co2(btc)(bpdc)(0.5)(py)3]n(1),was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid(H3btc) as a main building block,along with two auxiliary ligands(H2bpdc = 2,2'-bipyridine-5,5'-dicarboxylic acid and py =pyridine).The product 1 was characterized by IR spectroscopy,elemental,thermogravimetric,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction studies show that compound 1 possesses an intricate 3D metal-organic framework based on tetracobalt(Ⅱ) units.Magnetic susceptibility measurement indicates that compound 1 shows an antiferromagnetic coupling between the Co(Ⅱ) ions. 展开更多
关键词 metal-organic framework carboxylate ligand magnetic properties
下载PDF
Syntheses,Structures,Luminescence and Magnetic Properties of Three New Metal-organic Frameworks Based on Rigid Carbazole Ligand 被引量:3
14
作者 薛军儒 何站 +4 位作者 张淑芳 梁月 张夏 敬林海 秦大斌 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第10期1574-1581,共8页
Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) ha... Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) have been successfully synthesized based on the controllable self-assembly of 9-ethyl-3,6-diimidazolyl-carbazole(L),varied carboxylates and different metal ions under solvothermal conditions,which were characterized by single-crystal X-ray diffraction,elemental analysis,IR spectroscopy and thermogravimetry. Furthermore,luminescence and magnetic susceptibility of compound 2 are also investigated in detail. Single-crystal X-ray diffraction and topology analysis reveal that complexes 1~3 exhibit similar two-dimensional(2D) networks. 展开更多
关键词 metal-organic frameworks carbazole luminescence
下载PDF
Magnetic Property of a Three-dimensional Copper Metal-organic Framework
15
作者 高玉洁 田崇斌 +4 位作者 唐敬筱 崔美艳 周创宇 冯美玲 黄小荥 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第9期1486-1493,共8页
A copper metal-organic framework(MOF) compound based on 2,5-thiophenedicarboxylic acid(H2 TDC) ligand, namely Cu(TDC)(H2 O)?DMA(1, DMA = N,N?-dimethylacetamide), has been synthesized in gram-scale via a on... A copper metal-organic framework(MOF) compound based on 2,5-thiophenedicarboxylic acid(H2 TDC) ligand, namely Cu(TDC)(H2 O)?DMA(1, DMA = N,N?-dimethylacetamide), has been synthesized in gram-scale via a one-pot solvothermal route in a high yield of 81.3%. Single-crystal X-ray analysis reveals that the structure of 1 features a three-dimensional(3D) open framework constructed by TDC interconnecting 1D chains of [-Cu(COO)(H2 O)Cu-]n. Thermal property was investigated by TG-MS. The magnetic measurements indicate the existence of weak antiferromagnetic interactions between the Cu2+ centers in 1. 展开更多
关键词 metal-organic framework COPPER solvothermal synthesis STRUCTURE magnetic property
下载PDF
Synthesis, Structure, and Magnetic Properties of a New 2D Cobalt(Ⅱ) Metal-organic Framework
16
作者 陈绪兴 李荣 +3 位作者 王帅华 蔡丽珍 易志国 黄新堂 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第8期1375-1380,共6页
Rational design of magnetic materials with desired magnetic properties has attracted wide interest in recent decades. Herein, we present a new 2D cobalt(II) metal-organic framework, namely [Co(MQ)2(V2O6)2]n·... Rational design of magnetic materials with desired magnetic properties has attracted wide interest in recent decades. Herein, we present a new 2D cobalt(II) metal-organic framework, namely [Co(MQ)2(V2O6)2]n·4nH2O 1, which was hydrothermally synthesized by the reaction of Co(NO3)2·4H2O, N-methyl-4,4′-bipyridinium(MQ+) chlorine salt and NH4VO3. Single-crystal X-ray diffraction analysis reveals that 1 crystallizes in C2/c space group with a = 16.290(5), b = 7.815(2), c = 25.297(7) A, β = 108.459(5)°, V = 3054.8(15) A3, Z = 4, Dc = 1.890 g/cm3, μ = 1.791 mm-1, F(000) = 1748, the final R = 0.0444 and wR = 0.1208 with I 〉 2σ(I). The individual Co(II) is connected and well separated by diamagnetic [V2O6]2-linkers. Magnetic measurements confirm that 1 exhibits ferrimagnetic interactions. 展开更多
关键词 cobalt metal-organic framework hydrothermal reaction crystal structure magnetic property
下载PDF
Magnetic and electronic properties of two-dimensional metal-organic frameworks TM_(3)(C_(2)NH)_(12)
17
作者 Zhen Feng Yi Li +2 位作者 Yaqiang Ma Yipeng An Xianqi Dai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期1-12,共12页
The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic fra... The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials(TM-NH MOF,TM=Sc-Zn)are designed,and their electronic and magnetic characters are systematically studied by means of first-principles calculations.Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations.Their optimized lattice constants are correlated to the central TM atoms.These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers.Interestingly,Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS),while Fe-NH MOF monolayer is a half-semiconductor(HSM).Furthermore,the elastic strain could tune their magnetic behaviors and transformation,which ascribes to the charge redistribution of TM-3d states.This work predicts several new 2D magnetic MOF materials,which are promising for applications in spintronics and nanoelectronics. 展开更多
关键词 two-dimensional metal-organic frameworks electronic structure magnetic property strain engineering
下载PDF
Engineering Spin States of Isolated Copper Species in a Metal-Organic Framework Improves Urea Electrosynthesis 被引量:8
18
作者 Yuhang Gao Jingnan Wang +4 位作者 Yijun Yang Jian Wang Chuang Zhang Xi Wang Jiannian Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期536-549,共14页
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for elec... The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal–organic frameworks: Cu^(Ⅲ)-HHTP and Cu^(Ⅱ)-HHTP. Cu^(Ⅲ)-HHTP exhibits an improved urea production rate of 7.78 mmol h^(−1)g^(−1) and an enhanced Faradaic efficiency of 23.09% at-0.6 V vs. reversible hydrogen electrode, in sharp contrast to Cu^(Ⅱ)-HHTP.Isolated CuⅢspecies with S = 0 spin ground state are demonstrated as the active center in Cu^(Ⅲ)-HHTP, different from Cu^(Ⅱ) with S = 1/2 in Cu^(Ⅱ)-HHTP. We further demonstrate that isolated Cu^(Ⅲ)with an empty dx2-y20orbital in Cu^(Ⅲ)-HHTP experiences a single-electron migration path with a lower energy barrier in the C–N coupling process, while Cu^(Ⅱ)with a single-spin state( d_(x2-y2)^(1)) in Cu^(Ⅱ)-HHTP undergoes a two-electron migration pathway. 展开更多
关键词 ELECTROCATALYSIS Urea synthesis metal-organic framework Spin catalysis C-N coupling
下载PDF
Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage 被引量:2
19
作者 Lanju Sun Honglei Wang +7 位作者 Shengliang Zhai Jikai Sun Xu Fang Hongyan Yang Dong Zhai Chengcheng Liu Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期368-376,I0009,共10页
Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorpt... Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorption energy(ΔEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory(DFT) calculations reveal that the interaction between MXene and MOF significantly increases the ΔEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g^(-1), outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg^(-1)and power density of 7600 W kg^(-1). The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage. 展开更多
关键词 MXene metal-organic framework HETEROSTRUCTURE Lithium-ion battery Adsorption energy
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
20
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部