CuFe_2O_4-TiO_2/graphene nanocomposites have been prepared via a one-step hydrothermal method,and the as-prepared CuFe_2O_4-TiO_2/graphene was characterized by X-ray powder diffraction,Raman spectroscopy,scanning elec...CuFe_2O_4-TiO_2/graphene nanocomposites have been prepared via a one-step hydrothermal method,and the as-prepared CuFe_2O_4-TiO_2/graphene was characterized by X-ray powder diffraction,Raman spectroscopy,scanning electron microscopy and transmission electron microscopy.The transmission electron microscopy demonstrated that CuFe_2O_4-TiO_2 nanoparticles were successfully dispersed on the graphene sheets.Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue(MB) dye solution under visible light radiation.Results showed that the photocatalytic efficiency of CuFe_2O_4-TiO_2/graphene nanocomposites was higher than its individual pure oxides(CuFe_2O_4 or TiO_2) and TiO_2/graphene.The enhancing photocatalytic activity performance of the CuFe_2O_4-TiO_2/graphene nanocomposites may attributed to the mutual effect between the Cu Fe_2O_4,Ti O_2 nanoparticles and the graphene sheets.Moreover,Cu Fe_2O_4 nanoparticles have excellent magnetic property,which makes the CuFe_2O_4-TiO_2/graphene heteroarchitecture magnetically recyclable in a suspension system.展开更多
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch...The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.展开更多
Fe_3O_4/Polystyrene(PSt) magnetic particles with core/shell structure have been prepared in thepresence of Fe_3O_4 magnetic fluid in ethanol/water medium by dispersion polymeriation of styrene. A Fe_3O_4particle forma...Fe_3O_4/Polystyrene(PSt) magnetic particles with core/shell structure have been prepared in thepresence of Fe_3O_4 magnetic fluid in ethanol/water medium by dispersion polymeriation of styrene. A Fe_3O_4particle formation mechanism was proposed. According to this mechanism, the size of particle nuclei isdetermined by the extent of aggregation of Fe_3O_4 /oligomer. Magnetic particles with diameter ranging from 5to 200 μm were prepared under different reaction conditions. Some polymerization parameters such as theconcentration of monomer, stabilizer, initiator, and ethanol which affect particle size and size distribution arediscussed and their effect on particle formation are explained by the proposed mechanism.展开更多
Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and ...Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.展开更多
The effect of a rotating magnetic field(RMF)on the distribution of Al_(2)O_(3)particles with an Al melt was studied by means of simulation and experiment.The results show that Al_(2)O_(3)particles(diameter of 1-10μm,...The effect of a rotating magnetic field(RMF)on the distribution of Al_(2)O_(3)particles with an Al melt was studied by means of simulation and experiment.The results show that Al_(2)O_(3)particles(diameter of 1-10μm,1wt.%)are significantly agglomerated at the top of ingots when subjected to an RMF,and their distribution is influenced by both the intensity and the duration of RMF application.The optimal separation efficiency is achieved with the magnetic intensity of 12 mT for 120 s.The number of the particles at the bottom and the middle decreases by 64.5%and 69.7%,respectively,while that at the top increases by 242.5%compared to the condition without an RMF.However,if further increase the intensity or the duration of RMF,it can induce turbulent flows that draw some of the separated Al_(2)O_(3)particles back into the melt,reducing separation efficiency.The calculation results show that as the magnetic intensity increases from 6 mT to 18 mT,the velocity difference between the particles and the Al melt flow quadruples,increasing from 0.013 m·s^(-1)to 0.066 m·s^(-1).Driven by this velocity difference,centrifugal motion,and secondary circulation,Al_(2)O_(3)particles tend to migrate upwards within the melt,facilitating the separation of impurity particles and enhancing the purity of the melt.展开更多
The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and t...The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and the CoFe2O4 layers are amorphous. Ferromagnetic resonance measurements have been made as a function of the external magnetic field orientation in a plane perpendicular to the film. The effective magnetization, effective anisotropy constant and interface anisotropy constant have been determined. The influence of Co layers thickness on magnetic properties was discussed.展开更多
Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained...Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained by adjusting the thickness of the CMS and NFO layers.F-mica substrate has a flatter surface than glass and Si/SiO_(2) substrate.The magnetic anisotropy energy density(K_(eff))of the sample deposited on F-mica substrates is 0.6711 Merg/cm^(3)(1 erg=10^(-7) J),which is about 30%higher than that of the multilayer films deposited on glass(0.475 Merg/cm^(3))and Si/SiO_(2)(0.511 Merg/cm^(3))substrates,and the R_(Hall) and H_(C) are also significantly increased.In this study,the NFO layer prepared by sputtering in the high purity Ar environment was exposed to the high purity O_(2) atmosphere for 5 min,which can effectively eliminate the oxygen loss and oxygen vacancy in NFO,ensuring enough Co-O orbital hybridization at the interface of CMS/NFO,and thus effectively improve the sample PMA.展开更多
The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_...The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_(AA), J_(BB) and J_(AB) are obtained using a probability distribution law. The critical exponent associated with the magnetic susceptibility is obtained.展开更多
Novel magnetic nanoparticles(MNPs),Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2),were prepared by loading different amounts of SiO_(2) or/and PEG-(COOH)_(2) onto Fe_(3)O_(4) nanoparticles,and their feasib...Novel magnetic nanoparticles(MNPs),Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2),were prepared by loading different amounts of SiO_(2) or/and PEG-(COOH)_(2) onto Fe_(3)O_(4) nanoparticles,and their feasibility to be used as forward osmosis(FO)draw solutes was investigated.The characterization of the materials showed that,compared to normal Fe_(3)O_(4) nanoparticles,the modified MNPs exhibited enhanced dispersity and high osmotic pressure in aqueous solution.The FO experiment indicated that the synthesized draw solutes could obtain a water flux as high as 10 L·m^(-2)·h^(-1) with an aquaporin FO membrane.The optimal concentration of the added tetraethyl orthosilicate was 30%during the synthesis.The novel MNPs could be easily recovered from draw solutions by magnetic field,and the recovery rate of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was 83.95%and 63.37%,respectively.Moreover,after 5 recycles of reuse,the water flux of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) as draw solutes still remained 64.36%and 85.26%,respectively.The experimental results demonstrated that the synthesized core–shell magnetic nanoparticles are promising draw solutes,and the Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was more suitable to be used as draw solute in FO process.展开更多
基金Supported by the National Natural Science Function of China(No.21303058)
文摘CuFe_2O_4-TiO_2/graphene nanocomposites have been prepared via a one-step hydrothermal method,and the as-prepared CuFe_2O_4-TiO_2/graphene was characterized by X-ray powder diffraction,Raman spectroscopy,scanning electron microscopy and transmission electron microscopy.The transmission electron microscopy demonstrated that CuFe_2O_4-TiO_2 nanoparticles were successfully dispersed on the graphene sheets.Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue(MB) dye solution under visible light radiation.Results showed that the photocatalytic efficiency of CuFe_2O_4-TiO_2/graphene nanocomposites was higher than its individual pure oxides(CuFe_2O_4 or TiO_2) and TiO_2/graphene.The enhancing photocatalytic activity performance of the CuFe_2O_4-TiO_2/graphene nanocomposites may attributed to the mutual effect between the Cu Fe_2O_4,Ti O_2 nanoparticles and the graphene sheets.Moreover,Cu Fe_2O_4 nanoparticles have excellent magnetic property,which makes the CuFe_2O_4-TiO_2/graphene heteroarchitecture magnetically recyclable in a suspension system.
文摘The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.
基金Project 59573011 was supported by National Natural Science Foundation of China
文摘Fe_3O_4/Polystyrene(PSt) magnetic particles with core/shell structure have been prepared in thepresence of Fe_3O_4 magnetic fluid in ethanol/water medium by dispersion polymeriation of styrene. A Fe_3O_4particle formation mechanism was proposed. According to this mechanism, the size of particle nuclei isdetermined by the extent of aggregation of Fe_3O_4 /oligomer. Magnetic particles with diameter ranging from 5to 200 μm were prepared under different reaction conditions. Some polymerization parameters such as theconcentration of monomer, stabilizer, initiator, and ethanol which affect particle size and size distribution arediscussed and their effect on particle formation are explained by the proposed mechanism.
文摘Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.
基金support of the National Natural Science Foundation of China(Nos.52171135 and 51971048).
文摘The effect of a rotating magnetic field(RMF)on the distribution of Al_(2)O_(3)particles with an Al melt was studied by means of simulation and experiment.The results show that Al_(2)O_(3)particles(diameter of 1-10μm,1wt.%)are significantly agglomerated at the top of ingots when subjected to an RMF,and their distribution is influenced by both the intensity and the duration of RMF application.The optimal separation efficiency is achieved with the magnetic intensity of 12 mT for 120 s.The number of the particles at the bottom and the middle decreases by 64.5%and 69.7%,respectively,while that at the top increases by 242.5%compared to the condition without an RMF.However,if further increase the intensity or the duration of RMF,it can induce turbulent flows that draw some of the separated Al_(2)O_(3)particles back into the melt,reducing separation efficiency.The calculation results show that as the magnetic intensity increases from 6 mT to 18 mT,the velocity difference between the particles and the Al melt flow quadruples,increasing from 0.013 m·s^(-1)to 0.066 m·s^(-1).Driven by this velocity difference,centrifugal motion,and secondary circulation,Al_(2)O_(3)particles tend to migrate upwards within the melt,facilitating the separation of impurity particles and enhancing the purity of the melt.
文摘The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and the CoFe2O4 layers are amorphous. Ferromagnetic resonance measurements have been made as a function of the external magnetic field orientation in a plane perpendicular to the film. The effective magnetization, effective anisotropy constant and interface anisotropy constant have been determined. The influence of Co layers thickness on magnetic properties was discussed.
文摘Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained by adjusting the thickness of the CMS and NFO layers.F-mica substrate has a flatter surface than glass and Si/SiO_(2) substrate.The magnetic anisotropy energy density(K_(eff))of the sample deposited on F-mica substrates is 0.6711 Merg/cm^(3)(1 erg=10^(-7) J),which is about 30%higher than that of the multilayer films deposited on glass(0.475 Merg/cm^(3))and Si/SiO_(2)(0.511 Merg/cm^(3))substrates,and the R_(Hall) and H_(C) are also significantly increased.In this study,the NFO layer prepared by sputtering in the high purity Ar environment was exposed to the high purity O_(2) atmosphere for 5 min,which can effectively eliminate the oxygen loss and oxygen vacancy in NFO,ensuring enough Co-O orbital hybridization at the interface of CMS/NFO,and thus effectively improve the sample PMA.
文摘The magnetic properties of spinel ferrites Cu_(1-x)Zn_xFe_2O_4 are studied using high-temperature series expansions combined with the Padé approximates. The exchange interactions, inter and intra-sublattices J_(AA), J_(BB) and J_(AB) are obtained using a probability distribution law. The critical exponent associated with the magnetic susceptibility is obtained.
文摘Novel magnetic nanoparticles(MNPs),Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2),were prepared by loading different amounts of SiO_(2) or/and PEG-(COOH)_(2) onto Fe_(3)O_(4) nanoparticles,and their feasibility to be used as forward osmosis(FO)draw solutes was investigated.The characterization of the materials showed that,compared to normal Fe_(3)O_(4) nanoparticles,the modified MNPs exhibited enhanced dispersity and high osmotic pressure in aqueous solution.The FO experiment indicated that the synthesized draw solutes could obtain a water flux as high as 10 L·m^(-2)·h^(-1) with an aquaporin FO membrane.The optimal concentration of the added tetraethyl orthosilicate was 30%during the synthesis.The novel MNPs could be easily recovered from draw solutions by magnetic field,and the recovery rate of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was 83.95%and 63.37%,respectively.Moreover,after 5 recycles of reuse,the water flux of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) as draw solutes still remained 64.36%and 85.26%,respectively.The experimental results demonstrated that the synthesized core–shell magnetic nanoparticles are promising draw solutes,and the Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was more suitable to be used as draw solute in FO process.