Macroporous magnetic poly(GMA-EGDMA-DVB) microspheres synthesized by suspension polymerization were used as supports for palladium catalyst.The results showed the novel magnetic catalyst can promote Heck reaction of a...Macroporous magnetic poly(GMA-EGDMA-DVB) microspheres synthesized by suspension polymerization were used as supports for palladium catalyst.The results showed the novel magnetic catalyst can promote Heck reaction of aryl halides with acrylic acid efficiently without an inert atmosphere.In addition,the novel catalyst can be conveniently recovered by applying an external magnet and reused at least five times without significant loss of its activity.展开更多
The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterize...The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.展开更多
In order to overcome the drawback of the low degree of separation from an aqueous solution of MnO_2, Fe_3 O_4-MnO_2 core-shell nanocomposites were used as heterogeneous Fenton-like catalysts for the removal of acid or...In order to overcome the drawback of the low degree of separation from an aqueous solution of MnO_2, Fe_3 O_4-MnO_2 core-shell nanocomposites were used as heterogeneous Fenton-like catalysts for the removal of acid orange 7. On the basis of the catalyst characterization, the catalytic ability of the as-synthesized nanocomposites was examined. The results showed that Fe304-Mn02 core-shell nanocomposites had greater catalytic ability than Fe_3 O_4 or MnO_2 used alone. Meanwhile, the catalyst dosage, H_2 O_2 dosage, temperature, and initial pH had significant effects on the removal of acid orange 7. A high degree of stability and reusability were exhibited by Fe_3 O_4-MnO_2 core-shell nanocomposites. Both HO· and HO_2· were generated in the reaction and HO· was the main radical for the removal of acid orange 7. A mechanism for H_2 O_2 catalytic decomposition using Fe_3 O_4-MnO_2 core-shell nanocomposites to produce HO·is proposed.展开更多
Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effect...Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects such as superficial liquid velocity, superficial gas velocity, magnetic strength, liquid viscosity, and particle size were investigated. Experimental results indicated that the G-L volumetric mass transfer coefficients (KLa) increased along with the magnetic strength, superficial gas and liquid velocities. Proper increase of liquid viscosity promoted KLa only in the range of lower liquid viscosity. The external magnetic field made L-S mass transfer coefficients (Ks) in the G-L-S MSB lower than those of conventional fluidized beds. Ks in the MSB almost kept constant as the su- perficial liquid velocity and superficial gas velocity increased and decreased with the liquid viscosity and surface tension, while increased with the particle size Ks showed uniform axial and radial distributions except of small de- creases close to the wall. Dimensionless correlations were established to estimate KLa and Ks of the MSB with SRNA-4 catalysts , which showed the average error of 5.4% and 2.5% respectively.展开更多
The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_...The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.展开更多
An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized condition...An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%) can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.展开更多
A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction...A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
In the era of serious greenhouse gas emission and energy shortage,it is necessary to use solid waste to prepare new renewable materials.In this work,the potential application of reed straw and electric furnace dust wa...In the era of serious greenhouse gas emission and energy shortage,it is necessary to use solid waste to prepare new renewable materials.In this work,the potential application of reed straw and electric furnace dust was explored.Firstly,magnetic carbon carrier(EFD&C)was prepared by high temperature calcination,and then magnetic carbon catalyst(SM@EFD&C)was prepared by activation of sodium methoxide.The catalyst was used to prepare biodiesel by transesterification reaction to test its activity and stability.Reed biochar,EFD&C and SM@EFD&C were detected by Diffraction of X-rays(XRD),Fourier transform infrared(FT-IR),Inductively coupled plasma(ICP),Scanning electron microscope(SEM),Transmission electron microscope(TEM),Brunauer-Emmett-Teller(BET),Vibrating sample magnetometer(VSM),Temperature programmed desorption of CO_(2)(CO_(2)-TPD)and Thermogravimetric analysis(TG-DTG).The results showed that SM@EFD&C catalyst had some characteristics including porous structure,easy adsorption and better magnetism.Under the reaction conditions of 65℃for 2 h with 6 wt%catalyst and methanol/oil molar ratio of 15:1,the biodiesel yields from reed biochar and EFD&C were only 4.88 wt%and 0.03 wt%,respectively,while the yield from SM@EFD&C catalyst reached 93.14 wt%(89.84 wt%after 7 cycles)under the same conditions,which proved that it had good catalytic activity and stability when used in biodiesel production.This study is of great significance of carbon dioxide emission reduction and environmental protection.展开更多
A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. Th...A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.展开更多
An extensive analysis of iron-nitrogen-carbon(Fe-N-C)electrocatalysts synthesis and activity is presented concerning synthesis conditions such as initial Fe content,pyrolysis temperature and atmosphere(inert N_(2),red...An extensive analysis of iron-nitrogen-carbon(Fe-N-C)electrocatalysts synthesis and activity is presented concerning synthesis conditions such as initial Fe content,pyrolysis temperature and atmosphere(inert N_(2),reducing NH_(3),oxidizing Cl_(2) and their sequential combinations)and the influence of an external magnetic field on their performance in oxygen reduction reaction(ORR).Thermosetting porous polymers doped with FeCl_(3) were utilized as the Fe-N-C catalysts precursors.The pyrolysis temperature was varied within a 700-900℃range.The temperature and atmosphere of pyrolysis strongly affect the porosity and compositi on of the resultant Fe-N-C catalysts,while the in itial amount of Fe precursor shows much weaker impact.Pyrolysis under NH_(3) yields materials similar to those pyrolyzed under an inert atmosphere(N_(2)).In contrast,pyrolysis under Cl_(2) yields carbon of peculiar character with highly disordered structure and extensive microporosity.The application of a static external magnetic field strongly enhances the ORR process(herein studied in an alkaline environment)and the enhancement correlates with the Fe content in the Fe-N-C catalysts.The Fe-N-C materials containing ferromagnetic iron phase embedded in N-doped microporous carbon constitute attractive catalysts for magnetic field-aided anion exchange membrane fuel cell technology.展开更多
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta...In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.展开更多
The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was contr...The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was controllable by adjusting the ratio of two metal precursors,copper formate(Cuf)and nickel acetate tetrahydrate(Ni(OAc)_(2)·4H_(2)O).Ni/Cu NPs were further anchored on graphene oxide(GO)to prepare a magnetic composite catalyst,called Ni/Cu-GO.The dispersibility of Ni/Cu NPs in solution was enhanced by GO anchoring to prevent the sintering and aggregation during the reaction process,thereby ensuring the catalytic and cycling performance of the catalyst.The catalytic transfer hydrogenation(CTH)reaction of nitroaromatics was investigated when ammonia borane was used as the hydrogen source.Cu dominated the main catalytic role in the reaction,while Ni played a synergistic role of catalysis and providing magnetic properties for separation.The Ni_(7)/Cu_(3)-GO catalyst exhibited the best catalytic performance with the conversion and yield of 99%and 96%,respectively,when 2-methyl-5-nitrophenol was used as the substrate.The Ni_(7)/Cu_(3)-GO catalyst also exhibited excellent cyclic catalytic performance with the 5-amino-2-methylphenol yield of above 90%after six cycles.In addition,the Ni_(7)/Cu_(3)-GO catalyst could be quickly recycled by magnetic separation.Moreover,the Ni_(7)/Cu_(3)-GO catalyst showed good catalytic performance for halogen-containing nitroaromatics without dehalogenation.展开更多
Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst prepar...Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization.展开更多
A magnetic porous carbon composite(MPC)was prepared from metal-organic frameworks(MOFs)by the onestep calcination method.The MPC was characterized by SEM,TEM,TG,DTG,Raman and XPS.The adsorption and degradation perform...A magnetic porous carbon composite(MPC)was prepared from metal-organic frameworks(MOFs)by the onestep calcination method.The MPC was characterized by SEM,TEM,TG,DTG,Raman and XPS.The adsorption and degradation performance of MPC towards four organic dyes were investigated.The maximum adsorption amount of magenta on MPC was 191.94 mg g^(-1) at 25℃.Furthermore,the MPC showed remarkable stability for it can be recycled 5 times through the facile magnetic separation without obvious loss of activity.The degradation efficiency of MPC toward four kinds of organic pollutants was nearly 100%within 36 min,which was much higher than that previously reported.展开更多
The base-free aerobic oxidation of 5-hydroxymethylfurfural(HMF) to 2,5-furandicarboxylic acid(FDCA)in water is recognized as an important and sustainable upgrading process for cellulosic carbohydrates.However,selectiv...The base-free aerobic oxidation of 5-hydroxymethylfurfural(HMF) to 2,5-furandicarboxylic acid(FDCA)in water is recognized as an important and sustainable upgrading process for cellulosic carbohydrates.However,selectivity control still remains a challenge.Here,we disclose that the unique synergy in magnetic Ni_(x)Co_(1)O_(y)(x=1,3 and 5) bimetallic oxides can induce reactive oxygen defects and simultaneously stabilize small-sized metallic Au nanoparticles in the Au/Ni_(x)Co_(1)O_(y)catalysts.Such catalytic features render effective adsorption and activation of O_(2),OH and C=O groups,realizing selective oxidation of HMF to FDCA.On a series of magnetic Au/Ni_(x)Co_(1)O_(y)catalysts with almost identical Au loadings(ca.0.5 wt%) and particle sizes(ca.2.7 nm),the variable Ni/Co molar ratios give rise to the tunable electron density of Au sites and synergistic effect between NiO and CoO_(y).The initial conversion rates of HMF and its derived intermediates(i.e., DFF,HMFCA and FFCA) show a volcano-like dependence on the number of oxygen defects(i.e.,O_(2)^(-)and O^(-)) and electron-rich Au0sites.The optimum Au/Ni3Co1Oycatalyst exhibits a highest productivity of FDCA(12.5 mmol_(FDCA)mol_(Au)^(-1)h^(-1)) among all the Au catalysts in the literature and achieves> 99% yield of FDCA at 120℃ and 10 bar of O_(2).In addition,this catalyst can be easily recovered by a magnet and show superior stability and reusability during six consecutive cycling tests.This work may shed a light on Au catalysis for the base-free oxidation of biomass compounds by smartly using the synergy in bimetallic oxide carriers.展开更多
In this study,we selected 10 Co-based double-atom catalysts(DACs)catalysts,namely CoMN_(6)-gra(OH)(M?Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn),and investigated their oxygen reduction reactions(ORR)catalytic performances with/with...In this study,we selected 10 Co-based double-atom catalysts(DACs)catalysts,namely CoMN_(6)-gra(OH)(M?Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn),and investigated their oxygen reduction reactions(ORR)catalytic performances with/without considering the magnetic coupling by means of density functional theory(DFT)calculations.It was found that CoNiN_(6)-gra(OH),CoCuN_(6)-gra(OH),and CoZnN_(6)-gra(OH)exhibit good catalytic activity of ORR(with low overpotentials of 0.33,0.34 and 0.23 V,respectively)when the magnetic coupling is considered.In particular,magnetic changes in CoMN_(6)-gra(OH)candidates play a vital role in their ORR catalytic activity.Interestingly,the d-band center can be utilized to well rationalize the ORR catalytic activity.This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts,and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions.展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy bre...The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy breakage during the vehicle movement, leading to increased pressure drop and reduced system stability. Herein, we introduce an integrated method to prepare the highly controlled structured catalysts based on coupled processes: direct prototyping the structured substrate using digital light processing(DLP) 3D printing technology, in-situ dynamic crystallization of active components assisted by magnetic resonance imaging(MRI) and calcination. The synthesized catalyst owns a gradient layer of active component, and exhibits better MSR performance, higher mechanical strength, reduced pressure drop, higher Cu dispersion and better adhesion of active compounds when compared with the conventional powder and pellet catalysts. The demonstrated successful application proves the feasibility of developed method,which has great potential to be used for preparing precisely other monolithic catalysts with customized structures.展开更多
文摘Macroporous magnetic poly(GMA-EGDMA-DVB) microspheres synthesized by suspension polymerization were used as supports for palladium catalyst.The results showed the novel magnetic catalyst can promote Heck reaction of aryl halides with acrylic acid efficiently without an inert atmosphere.In addition,the novel catalyst can be conveniently recovered by applying an external magnet and reused at least five times without significant loss of its activity.
基金Supported by the Key Program of National Natural Science Foundation of China(20936003)the Foundation for Innovation Research Groups of the Natural Science Foundation of Hubei Province(2008CDA009)
文摘The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.
基金supported by the National Natural Science Foundation of China(Grant No.51508564)
文摘In order to overcome the drawback of the low degree of separation from an aqueous solution of MnO_2, Fe_3 O_4-MnO_2 core-shell nanocomposites were used as heterogeneous Fenton-like catalysts for the removal of acid orange 7. On the basis of the catalyst characterization, the catalytic ability of the as-synthesized nanocomposites was examined. The results showed that Fe304-Mn02 core-shell nanocomposites had greater catalytic ability than Fe_3 O_4 or MnO_2 used alone. Meanwhile, the catalyst dosage, H_2 O_2 dosage, temperature, and initial pH had significant effects on the removal of acid orange 7. A high degree of stability and reusability were exhibited by Fe_3 O_4-MnO_2 core-shell nanocomposites. Both HO· and HO_2· were generated in the reaction and HO· was the main radical for the removal of acid orange 7. A mechanism for H_2 O_2 catalytic decomposition using Fe_3 O_4-MnO_2 core-shell nanocomposites to produce HO·is proposed.
基金the National Natural Science Foundation of China (No.20206023, No.20676096)the Special Funds for MajorState Basic Research Program of China (973 Program, 2006CB202500)SINOPEC (X504029).
文摘Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects such as superficial liquid velocity, superficial gas velocity, magnetic strength, liquid viscosity, and particle size were investigated. Experimental results indicated that the G-L volumetric mass transfer coefficients (KLa) increased along with the magnetic strength, superficial gas and liquid velocities. Proper increase of liquid viscosity promoted KLa only in the range of lower liquid viscosity. The external magnetic field made L-S mass transfer coefficients (Ks) in the G-L-S MSB lower than those of conventional fluidized beds. Ks in the MSB almost kept constant as the su- perficial liquid velocity and superficial gas velocity increased and decreased with the liquid viscosity and surface tension, while increased with the particle size Ks showed uniform axial and radial distributions except of small de- creases close to the wall. Dimensionless correlations were established to estimate KLa and Ks of the MSB with SRNA-4 catalysts , which showed the average error of 5.4% and 2.5% respectively.
文摘The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.
基金the Jiangsu Province Foundation of Natural Science(No.BK2009678) for the financial support
文摘An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%) can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.
基金financial support:The National Natural Science Foundation of China(21922814,21921005,21676273,21961160745,U1507203,31961133019)the Youth Innovation Promotion Association,CAS(Grant Nos.2016043)+1 种基金Beijing Natural Science Foundation(20194086)China Petroleum Enterprise Cooperation Project(PRIKY17094)。
文摘A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金the financial support from National Natural Science Foundation of China(Nos:52004095,51704119,and 21878161)the Natural Science Foundation of Hebei Province(E2017209243)Department of Education of Hebei Province(BJ2019038).
文摘In the era of serious greenhouse gas emission and energy shortage,it is necessary to use solid waste to prepare new renewable materials.In this work,the potential application of reed straw and electric furnace dust was explored.Firstly,magnetic carbon carrier(EFD&C)was prepared by high temperature calcination,and then magnetic carbon catalyst(SM@EFD&C)was prepared by activation of sodium methoxide.The catalyst was used to prepare biodiesel by transesterification reaction to test its activity and stability.Reed biochar,EFD&C and SM@EFD&C were detected by Diffraction of X-rays(XRD),Fourier transform infrared(FT-IR),Inductively coupled plasma(ICP),Scanning electron microscope(SEM),Transmission electron microscope(TEM),Brunauer-Emmett-Teller(BET),Vibrating sample magnetometer(VSM),Temperature programmed desorption of CO_(2)(CO_(2)-TPD)and Thermogravimetric analysis(TG-DTG).The results showed that SM@EFD&C catalyst had some characteristics including porous structure,easy adsorption and better magnetism.Under the reaction conditions of 65℃for 2 h with 6 wt%catalyst and methanol/oil molar ratio of 15:1,the biodiesel yields from reed biochar and EFD&C were only 4.88 wt%and 0.03 wt%,respectively,while the yield from SM@EFD&C catalyst reached 93.14 wt%(89.84 wt%after 7 cycles)under the same conditions,which proved that it had good catalytic activity and stability when used in biodiesel production.This study is of great significance of carbon dioxide emission reduction and environmental protection.
文摘A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.
基金supported by the National Science Centre,Poland,UMO-2016/23/B/ST5/00127。
文摘An extensive analysis of iron-nitrogen-carbon(Fe-N-C)electrocatalysts synthesis and activity is presented concerning synthesis conditions such as initial Fe content,pyrolysis temperature and atmosphere(inert N_(2),reducing NH_(3),oxidizing Cl_(2) and their sequential combinations)and the influence of an external magnetic field on their performance in oxygen reduction reaction(ORR).Thermosetting porous polymers doped with FeCl_(3) were utilized as the Fe-N-C catalysts precursors.The pyrolysis temperature was varied within a 700-900℃range.The temperature and atmosphere of pyrolysis strongly affect the porosity and compositi on of the resultant Fe-N-C catalysts,while the in itial amount of Fe precursor shows much weaker impact.Pyrolysis under NH_(3) yields materials similar to those pyrolyzed under an inert atmosphere(N_(2)).In contrast,pyrolysis under Cl_(2) yields carbon of peculiar character with highly disordered structure and extensive microporosity.The application of a static external magnetic field strongly enhances the ORR process(herein studied in an alkaline environment)and the enhancement correlates with the Fe content in the Fe-N-C catalysts.The Fe-N-C materials containing ferromagnetic iron phase embedded in N-doped microporous carbon constitute attractive catalysts for magnetic field-aided anion exchange membrane fuel cell technology.
基金supported by the Research and Development Institute at Nakhon Si Thammarat Rajabhat University and the Nanomaterials Chemistry Research Unit at Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat,Thailand(Grant No.004/2563).
文摘In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
基金supported by the National Natural Science Foundation of China(Grant No.21776161)。
文摘The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was controllable by adjusting the ratio of two metal precursors,copper formate(Cuf)and nickel acetate tetrahydrate(Ni(OAc)_(2)·4H_(2)O).Ni/Cu NPs were further anchored on graphene oxide(GO)to prepare a magnetic composite catalyst,called Ni/Cu-GO.The dispersibility of Ni/Cu NPs in solution was enhanced by GO anchoring to prevent the sintering and aggregation during the reaction process,thereby ensuring the catalytic and cycling performance of the catalyst.The catalytic transfer hydrogenation(CTH)reaction of nitroaromatics was investigated when ammonia borane was used as the hydrogen source.Cu dominated the main catalytic role in the reaction,while Ni played a synergistic role of catalysis and providing magnetic properties for separation.The Ni_(7)/Cu_(3)-GO catalyst exhibited the best catalytic performance with the conversion and yield of 99%and 96%,respectively,when 2-methyl-5-nitrophenol was used as the substrate.The Ni_(7)/Cu_(3)-GO catalyst also exhibited excellent cyclic catalytic performance with the 5-amino-2-methylphenol yield of above 90%after six cycles.In addition,the Ni_(7)/Cu_(3)-GO catalyst could be quickly recycled by magnetic separation.Moreover,the Ni_(7)/Cu_(3)-GO catalyst showed good catalytic performance for halogen-containing nitroaromatics without dehalogenation.
基金financed by the National Natural Science Foundation of China(31671572)the National Key R&D Program of China(2016YFE0112800)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT-17R105)。
文摘Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization.
基金supported by the National Natural Science Foundation of China(Nos.21305112,22066021,and 22174110)West Light Foundation of the Chinese Academy of Sciences(2021)+1 种基金the Special Fund Project for the Central Government to Guide Local Science and Technology Development(No.2020-2060503-17)the Industrial Support Plan of Gansu Provincial Department of Education,China(No.2021CYZC-01).
文摘A magnetic porous carbon composite(MPC)was prepared from metal-organic frameworks(MOFs)by the onestep calcination method.The MPC was characterized by SEM,TEM,TG,DTG,Raman and XPS.The adsorption and degradation performance of MPC towards four organic dyes were investigated.The maximum adsorption amount of magenta on MPC was 191.94 mg g^(-1) at 25℃.Furthermore,the MPC showed remarkable stability for it can be recycled 5 times through the facile magnetic separation without obvious loss of activity.The degradation efficiency of MPC toward four kinds of organic pollutants was nearly 100%within 36 min,which was much higher than that previously reported.
基金supported by the National Natural Science Foundation of China(22272149,22062025,21763031)the Yunnan Fundamental Research Projects(202001AW070012,202101AT070171)+3 种基金the Yunnan University’s Research Innovation Fund for Graduate Students(KC-22221892)the Open Research Fund of School of Chemistry and Chemical Engineering of Henan Normal Universitythe Workstation of Academician Chen Jing of Yunnan Province(202105AF150012)the Free Exploration Fund for Academician(202205AA160007)。
文摘The base-free aerobic oxidation of 5-hydroxymethylfurfural(HMF) to 2,5-furandicarboxylic acid(FDCA)in water is recognized as an important and sustainable upgrading process for cellulosic carbohydrates.However,selectivity control still remains a challenge.Here,we disclose that the unique synergy in magnetic Ni_(x)Co_(1)O_(y)(x=1,3 and 5) bimetallic oxides can induce reactive oxygen defects and simultaneously stabilize small-sized metallic Au nanoparticles in the Au/Ni_(x)Co_(1)O_(y)catalysts.Such catalytic features render effective adsorption and activation of O_(2),OH and C=O groups,realizing selective oxidation of HMF to FDCA.On a series of magnetic Au/Ni_(x)Co_(1)O_(y)catalysts with almost identical Au loadings(ca.0.5 wt%) and particle sizes(ca.2.7 nm),the variable Ni/Co molar ratios give rise to the tunable electron density of Au sites and synergistic effect between NiO and CoO_(y).The initial conversion rates of HMF and its derived intermediates(i.e., DFF,HMFCA and FFCA) show a volcano-like dependence on the number of oxygen defects(i.e.,O_(2)^(-)and O^(-)) and electron-rich Au0sites.The optimum Au/Ni3Co1Oycatalyst exhibits a highest productivity of FDCA(12.5 mmol_(FDCA)mol_(Au)^(-1)h^(-1)) among all the Au catalysts in the literature and achieves> 99% yield of FDCA at 120℃ and 10 bar of O_(2).In addition,this catalyst can be easily recovered by a magnet and show superior stability and reusability during six consecutive cycling tests.This work may shed a light on Au catalysis for the base-free oxidation of biomass compounds by smartly using the synergy in bimetallic oxide carriers.
基金financially supported in China by the National Natural Science Foundation of China(Grant Nos.11704203,11964024)the“Grassland Talents”project of Inner Mongolia Autonomous Region,China(Grant No.12000–12102613)+1 种基金the Young Science and Technology Talents Cultivation Project of Inner Mongolia University,China(21221505)the computational support from PARATEAR,and in USA by the National Science Foundation-Centers of Research Excellence in Science and Technology(NSF-CREST Center)for Innovation,Research and Education in Environmental Nanotechnology(CIRE2N)(Grant No.HRD-1736093).
文摘In this study,we selected 10 Co-based double-atom catalysts(DACs)catalysts,namely CoMN_(6)-gra(OH)(M?Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn),and investigated their oxygen reduction reactions(ORR)catalytic performances with/without considering the magnetic coupling by means of density functional theory(DFT)calculations.It was found that CoNiN_(6)-gra(OH),CoCuN_(6)-gra(OH),and CoZnN_(6)-gra(OH)exhibit good catalytic activity of ORR(with low overpotentials of 0.33,0.34 and 0.23 V,respectively)when the magnetic coupling is considered.In particular,magnetic changes in CoMN_(6)-gra(OH)candidates play a vital role in their ORR catalytic activity.Interestingly,the d-band center can be utilized to well rationalize the ORR catalytic activity.This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts,and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions.
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Key Technical Personnel of Chinese Academy of Sciences+1 种基金the STS Program of Chinese Academy of Sciences (No. KFJJ-STS-SCYD-302)the National Natural Science Foundation of China (22108288)。
文摘The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy breakage during the vehicle movement, leading to increased pressure drop and reduced system stability. Herein, we introduce an integrated method to prepare the highly controlled structured catalysts based on coupled processes: direct prototyping the structured substrate using digital light processing(DLP) 3D printing technology, in-situ dynamic crystallization of active components assisted by magnetic resonance imaging(MRI) and calcination. The synthesized catalyst owns a gradient layer of active component, and exhibits better MSR performance, higher mechanical strength, reduced pressure drop, higher Cu dispersion and better adhesion of active compounds when compared with the conventional powder and pellet catalysts. The demonstrated successful application proves the feasibility of developed method,which has great potential to be used for preparing precisely other monolithic catalysts with customized structures.