The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pu...The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pulses and also the samples of data recording devices on the spin storage medium are described. The study used a film with perpendicular anisotropy (Tb22Co5Fe73/Pr6O11/Tb29Co5Fe76, Tb25Co5Fe70/Al2O3, Tb22Co5Fe73, Tb19Co5Fe76) and films planar single-axis magnetic anisotropy (Co80Fe20/Pr6O11/CO30Fe70). The magnetic switching of magnetic layers under action the magnetic field of a spin current is the most important for practical use in elements of spintronic. The spin current can also be realized using short electrical pulses. On the basis of this mechanism, the high-speed recording of information on the spin carrier has been realized.展开更多
文摘The article presents the results of experimental studies of the physical mechanisms and magnetic switching dynamics of films with one or two magnetic nanolayers under an irradiation picosecond and femtosecond laser pulses and also the samples of data recording devices on the spin storage medium are described. The study used a film with perpendicular anisotropy (Tb22Co5Fe73/Pr6O11/Tb29Co5Fe76, Tb25Co5Fe70/Al2O3, Tb22Co5Fe73, Tb19Co5Fe76) and films planar single-axis magnetic anisotropy (Co80Fe20/Pr6O11/CO30Fe70). The magnetic switching of magnetic layers under action the magnetic field of a spin current is the most important for practical use in elements of spintronic. The spin current can also be realized using short electrical pulses. On the basis of this mechanism, the high-speed recording of information on the spin carrier has been realized.