The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteris...The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data.展开更多
A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling f...A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.展开更多
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
The motion equation of the rotor suspended by active magnetic bearing (AMB)is given in this paper after considering the nonlinear characteristics of the force.Fromthe response equation resulted from this Eq.we gained ...The motion equation of the rotor suspended by active magnetic bearing (AMB)is given in this paper after considering the nonlinear characteristics of the force.Fromthe response equation resulted from this Eq.we gained the functions of the jump ra-nge,and examined the effects of the A MB's parameters.展开更多
In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is bui...In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.展开更多
Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of el...Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.展开更多
The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial f...The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial free asymptotic solutions. In addition, the decay estimates of the solutions are also obtained.展开更多
In this paper, a new type of magnet is proposed and produced to give a uniform transverse beam profile.Compared to octupole magnets, the new type of magnet can provide a similar octupole magnet field in the middle,but...In this paper, a new type of magnet is proposed and produced to give a uniform transverse beam profile.Compared to octupole magnets, the new type of magnet can provide a similar octupole magnet field in the middle,but the rise rate declines quickly at the edges, so that a beam of the same uniformity is obtained with less particle loss.Besides that, a mechanical structure is added to adjust the width of the middle region to satisfy different transverse dimensions, which would further reduce particle loss. Some numerical simulations have been done with the octupole and the new type of magnet to show the advantages of the new magnet.展开更多
Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the mai...Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the main causes of beam loss.Tune shift/spread is large when the beam kinetic energy is low and will cause particles to cross dangerous resonances,while they will gradually decay with the increase of kinetic energy.Methods An efficient way,which was verified in operational accelerators,is to tune the working point during different acceleration periods:injection,acceleration and extraction.With the newly added function of time-dependent lattice in the ORBIT code,one can simulate the physical performance with different tune patterns to find the best way to reduce beam loss.Results The method to tune the working point by time-dependent lattice to weaken the crossing of dangerous resonances has been exploited,and implemented in the ORBIT code.It is the first of such try to apply the method in CSNS/RCS.Conclusions The results presented in this paper show that the time-dependent lattice method does help reduce beam loss in the injection and early acceleration.展开更多
基金This work was supported by the National Natural Science Foundation of China,No.10035020
文摘The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data.
文摘A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.
文摘The motion equation of the rotor suspended by active magnetic bearing (AMB)is given in this paper after considering the nonlinear characteristics of the force.Fromthe response equation resulted from this Eq.we gained the functions of the jump ra-nge,and examined the effects of the A MB's parameters.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.2013CB035603)the National Natural Science Foundation of China(Grant Nos.51177013&51322705)+3 种基金Qing Lan Project of Jiangsu ProvinceSix Talents Climax Project of Jiangsu Province(Grant No.2011-ZBZZ-036)Technology R&D Program of Jiangsu Province(Grant Nos.BE2012100&BY2012195)“333 Talents Project”of Jiangsu Province
文摘In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.
文摘Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.
基金Supported by the National Natural Science Foundation of China.
文摘The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial free asymptotic solutions. In addition, the decay estimates of the solutions are also obtained.
基金Supported supported by National Natural Science Foundation of China(11175195)
文摘In this paper, a new type of magnet is proposed and produced to give a uniform transverse beam profile.Compared to octupole magnets, the new type of magnet can provide a similar octupole magnet field in the middle,but the rise rate declines quickly at the edges, so that a beam of the same uniformity is obtained with less particle loss.Besides that, a mechanical structure is added to adjust the width of the middle region to satisfy different transverse dimensions, which would further reduce particle loss. Some numerical simulations have been done with the octupole and the new type of magnet to show the advantages of the new magnet.
基金the National Natural Science Foundation of China(Projects:11575214)the National Key Research and Development Program of China(Project:2016YFA0401600)and the CSNS Project.
文摘Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the main causes of beam loss.Tune shift/spread is large when the beam kinetic energy is low and will cause particles to cross dangerous resonances,while they will gradually decay with the increase of kinetic energy.Methods An efficient way,which was verified in operational accelerators,is to tune the working point during different acceleration periods:injection,acceleration and extraction.With the newly added function of time-dependent lattice in the ORBIT code,one can simulate the physical performance with different tune patterns to find the best way to reduce beam loss.Results The method to tune the working point by time-dependent lattice to weaken the crossing of dangerous resonances has been exploited,and implemented in the ORBIT code.It is the first of such try to apply the method in CSNS/RCS.Conclusions The results presented in this paper show that the time-dependent lattice method does help reduce beam loss in the injection and early acceleration.