A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a...A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAE It turns out that the steep radio/X-ray correlations observed in H 1743-322 and GX 339-4 can be interpreted based on our model.展开更多
The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents f...The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.展开更多
The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were...The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.展开更多
The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-...The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-ray diffraction, photoluminescence, afterglow emission spectra and long-lasting phosphorescence (LLP) decay curves are used to characterize this phosphor. After irradiation by a 290-nm UV light for 3 rain, the Pr^3+-doped La2Ti2O7 phosphor emits intense red emitting afterglow from the ^1D2 →^ 3H4 transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. The afterglow decay curve of the Pr^3+-doped La2Ti2O7 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this red light emitting LLP phosphor is also discussed based on the experimental results.展开更多
We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is power...We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers magnetic instability. At this moment, the hyperaccretion process may set in, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for the energies and timescales of GRBs with X-ray flares observed in early afterglows.展开更多
A disk-corona model for fitting the low/hard(LH)state of the associated steady jet in black hole X-ray binaries(BHXBs)is proposed based on the large-scale magnetic field configuration that arises from the coexiste...A disk-corona model for fitting the low/hard(LH)state of the associated steady jet in black hole X-ray binaries(BHXBs)is proposed based on the large-scale magnetic field configuration that arises from the coexistence of the Blandford-Znajek(BZ)and Blandford-Payne(BP)processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet.It is found that corona current is crucial to guarantee the consistency of the jet launching from the accretion disk.The relative importance of the BZ and BP processes in powering jets from black hole accretion disks is discussed,and the LH state of several BHXBs is fitted based on our model.In addition,we suggest that magnetic field configuration can be regarded as the second parameter for governing the state transition of BHXBs.展开更多
A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQ...A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQPO frequencies of some BHXBs can be fitted by the frequencies of the toroidal Alfv6n wave oscillation cor- responding to the maximal radiation flux. In addition, the positive correlation of the LFQPO frequencies with the radiation flux from an accretion disk is well interpreted.展开更多
基金supported by the National Basic Research Program of China (973 program, 2009CB824800)the National Natural Science Foundation of China (Grant Nos. 11173011 and 11403003)
文摘A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAE It turns out that the steep radio/X-ray correlations observed in H 1743-322 and GX 339-4 can be interpreted based on our model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173011, 11143001, 11103003 and 11045004)the National Basic Research Program of China (973 program, 2009CB824800)the Fundamental Research Funds for the Central Universities (HUST: 2011TS159)
文摘The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.
文摘The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.
基金Supported by the National Natural Science Foundations of China under Grant No 50872130.
文摘The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-ray diffraction, photoluminescence, afterglow emission spectra and long-lasting phosphorescence (LLP) decay curves are used to characterize this phosphor. After irradiation by a 290-nm UV light for 3 rain, the Pr^3+-doped La2Ti2O7 phosphor emits intense red emitting afterglow from the ^1D2 →^ 3H4 transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. The afterglow decay curve of the Pr^3+-doped La2Ti2O7 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this red light emitting LLP phosphor is also discussed based on the experimental results.
基金the National Natural Science Foundation of China under Grant 10703002
文摘We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers magnetic instability. At this moment, the hyperaccretion process may set in, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for the energies and timescales of GRBs with X-ray flares observed in early afterglows.
基金Supported by the National Natural Science Foundation of China (No. 11173011)the National Basic Research Program of China (973 Program, No. 2009CB824800)
文摘A disk-corona model for fitting the low/hard(LH)state of the associated steady jet in black hole X-ray binaries(BHXBs)is proposed based on the large-scale magnetic field configuration that arises from the coexistence of the Blandford-Znajek(BZ)and Blandford-Payne(BP)processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet.It is found that corona current is crucial to guarantee the consistency of the jet launching from the accretion disk.The relative importance of the BZ and BP processes in powering jets from black hole accretion disks is discussed,and the LH state of several BHXBs is fitted based on our model.In addition,we suggest that magnetic field configuration can be regarded as the second parameter for governing the state transition of BHXBs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173011,11143001,11103003 and 11045004)the National Basic Research Program of China (973 Program,2009CB824800)the Fundamental Research Funds for theCentral Universities (HUST:2011TS159)
文摘A model of low-frequency quasi-periodic oscillations (LFQPOs) of black hole X-ray binaries (BHXBs) is proposed based on the perturbed magnetohydrody- namic equations of an accretion disk. It turns out that the LFQPO frequencies of some BHXBs can be fitted by the frequencies of the toroidal Alfv6n wave oscillation cor- responding to the maximal radiation flux. In addition, the positive correlation of the LFQPO frequencies with the radiation flux from an accretion disk is well interpreted.