Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibra...Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibrating sample magnetometer(VSM) at room temperature.The results show that the grain size of nanocrystalline Ni1-xZnxFe2O4 ferrite calcined at 600 ℃ for 1.5 h is about 30 nm.Lattice parameter and specific saturation magnetization Ms of nanocrystalline Ni1-xZnxFe2O4 ferrite increase with the Zn^2+ ions content at room temperature,and maximum Ms is 66.8 A·m^2·kg^-1 as the Zn^2+ ions content is around 0.5,and coercivity Hc of the nanocrystalline Ni1-xZnxFe2O4 ferrite decreases with Zn^2+ ions content.展开更多
(Fe7Co3)0.15(SiO2)0.85 granular alloy solid was prepared successfully using sol-gel method. The samples with different reducing temperatures were investigated by X-ray diffractometer(XRD),transmission electron microgr...(Fe7Co3)0.15(SiO2)0.85 granular alloy solid was prepared successfully using sol-gel method. The samples with different reducing temperatures were investigated by X-ray diffractometer(XRD),transmission electron micrography(TEM) and vibrating sample magnetometer(VSM). The av-erage particIe sizes of the samples were also calculated from Scherrer formula. The magnetic properties of (Fe7Co3 )o. 15 (SiO2)0.85 were studied in detail.展开更多
Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples...Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.展开更多
Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed so...Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.展开更多
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysi...In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.展开更多
Soft magnetic properties of Fe82Mo7B10Cu1 nanocrystalline alloy were studied as a function of cooling condition. The results show that higher permeability and relaxation frequency can be obtained by the two-step cooli...Soft magnetic properties of Fe82Mo7B10Cu1 nanocrystalline alloy were studied as a function of cooling condition. The results show that higher permeability and relaxation frequency can be obtained by the two-step cooling method, and the pinning field of the sample obtained by this method is smaller than that of the furnace-cooled and water-quenched samples. This phenomenon was interpreted in terms of internal stress and the magnetic ordering of the residual amorphous phase. The two-step cooling treatment is an effective way to improve the soft magnetic properties of Fe82Mo7B10Cu1 nanocrystalline alloy.展开更多
Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed b...Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed by X-ray diffractometer(XRD). Surface microstructure was observed by scanning electron microscope(SEM) and atomic force microscope(AFM),and the magnetic properties were measured by vibrating sample magnetometer(VSM). XRD analyses of the samples show that Ni0.5+xZn0.5TixFe2-2xO4(NZTF) films with x varying from 0 to 0.15 in steps of 0.05 are composed of single phase with spinel structure. And the lattice parameter,particle size and the diffraction intensity of the films increase with substitution of Ti as the result of the larger radius ions entering the lattice. SEM and AFM show homogeneous grain size of each sample,but there is a few differences in grain size with different Ti-substitution contents. As the nonmagnetic Ti4+ substitutes Fe3+,both the saturation magnetization and coercivity decrease.展开更多
The perovskite manganite sample La0.3Ca0.7Mn1-xWxO3 (x = 0.08, 0.12) was prepared by the solid-state reaction method. The effect of W doping on the Mn site to La0.3Ca0.7MnO3 charge ordering phase and the changing pr...The perovskite manganite sample La0.3Ca0.7Mn1-xWxO3 (x = 0.08, 0.12) was prepared by the solid-state reaction method. The effect of W doping on the Mn site to La0.3Ca0.7MnO3 charge ordering phase and the changing process of magnetic properties were studied through the measurement of the M-T curve, M-H curves, and ESR curves of the sample. The results showed that when x = 0.08, the charge ordering (CO) phase exists in the system, the transition temperature Tco= 275 K, and the system exhibits PM when T 〉 275 K. The system transforms from spin-disordering paramagnetism to spin-ordering antiferromagnetism in the charge ordering state with the temperature decreasing from 275 K to 230 K. The long-range antiferromagnetism forms and AFM/CO states coexist between 230 K and 5 K. There is a little ferromagnetic component in the AFM/CO background in a low temperature range. When x = 0.12, the CO phase in the system has almost melted completely. There is a little remnant of the CO phase below 150 K. The system exhibits paramagnetism when T 〉 150 K and transforms from paramagnetism to ferromagnetism when T〈 150 K.展开更多
Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the struct...Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO_(2) nanoparticles were investigated.By varying the calcination temperature,X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size,respectively.Notably,the reduction in particle size of the synthesized KFeO_(2) was found to have a remarkable influence on the magnetic properties.At room temperature,the synthesized KFeO_(2) nanoparticles prepared at 873 K exhibited the highest saturation magnetization(M_(S))of 2.07×10^(4) A·m^(−1).In addition,the coercivity(H_(C))increased from 3.51 to 16.89 kA·m^(−1) as the calcination temperature increased to 973 K.The zero-field cooled(ZFC)results showed that the blocking temperatures(T_(B))of about 125 and 85 K were observed in the samples calcined at 773 and 873 K,respectively.Therefore,this work showed that the egg white solution method is simple,cost effective,and environmentally friendly for the preparation of KFeO_(2) nanoparticles.展开更多
The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considere...The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considered. It is found that all the lowest-energy Ira (n=4-13) geometries prefer non-compact structures rather than compact structure growth pattern. And the cube structure is a very stable cell for the lowest-energy Ira (n 〉 8) clusters. The second-order difference of energy, the vertical ionization potentials, the electron affinities and the atomic average magnetic moments for the lowest-energy Ira geometries all show odd even alternative behaviours.展开更多
The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, ...The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, they are used as gas sensor and absorbent of solar energy. Furthermore, they are employed as an effective catalyzer in environmental clearing. In the thermal gradation method, carbonyl cobalt Co2(CO)8 is often used as a precursor, though cobalt carbonyl is very toxic and expensive. Magnetic compounds have been among interesting issues for human beings for over 4000 years. In large societies, magnetic compounds including computer disks, credit cards, speakers, coolers, automatic doors, and many other devices can be observed on a daily basis. The structure and morphology of as-prepared Co3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The TEM images showed that the product nanoparticles consisted of dispersive quasi- spherical particles with a narrow size distribution ranged from 5 to 15 nm and an average size around 10 nm. The magnetic measurements confirmed that the Co3O4 nanoparticles show a little ferromagnetic behavior which could be attributed to the uncompensated surface spins and finite size effects. The ferromagnetic order of the Co3O4 nanoparticles is raised with increasing the decomposition temperature.展开更多
Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties...Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties of the samples were studied by means of X-ray diffraction, TEM, and VSM magnetometers. X-Ray powder diffraction results show that Ni-Mg solid solution was formed with the single phase of face-centered cubic(fcc) structure. The particle size became larger with the increase of temperature. When the sintering temperature was 400 °C, the particle size was 6.3 nm, whereas it was 46.2 nm at 900 °C. Both the saturation magnetization(Ms) and the coercivity were enhanced with the increase of the particle size. The Ms values of the samples ranged from 18.965 to 46.766 emu/g and the coercivity ranged from 1051.3568 to 9145.0848 A/m.展开更多
In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correla...In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correlationfunctions are obtained by using the Tyablikov decoupling approximation.Our results show that the magnetic susceptibilityand correlation length are a monotonically decreasing function of temperature regardless of the mixed spins.It isfound that in the case of S = s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropicferromagnetic Heisenberg chain in the whole temperature region.Our results for the susceptibility are in agreement withthose obtained by other theoretical approaches.展开更多
Fe-based bulk metallic glasses (BMGs) have been extensively studied due to their potential technological applications and their interesting physical properties such as a low modulus of elasticity, high yielding stress...Fe-based bulk metallic glasses (BMGs) have been extensively studied due to their potential technological applications and their interesting physical properties such as a low modulus of elasticity, high yielding stress and good magnetic properties. In the present work, the bulk metallic glass (BMG) formation of Fe40Ni40B20 (numbers indicate at %) with a ribbon form was fabricated by the single roller melt-spinning method. Rapid solidification leads to a fully amorphous structure for all compositions. The thermal properties associated with crystallization temperature of the glassy samples were measured using differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The microstructure and constituent phase of the alloy composite have been analyzed by using X-ray diffractometry (XRD). The effect of high temperature on the isothermal crystallization of Fe40Ni40B20 ribbon was investigated by HTX-ray diffraction. In addition, these ribbon glasses also exhibit good soft magnetic properties with M-H curvature measured under the magnetic fields between –1 kOe and 1 kOe.展开更多
Nano-crystalline Cr<sub>x</sub>CoFe<sub>2–x</sub>O<sub>4</sub> (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrites were synthesized by sol-gel method. The X-ray diffraction patterns of all t...Nano-crystalline Cr<sub>x</sub>CoFe<sub>2–x</sub>O<sub>4</sub> (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrites were synthesized by sol-gel method. The X-ray diffraction patterns of all the samples provide information about the existence of single phase spinel structure. The SEM and TEM micrographs show the uniform particle distribution and SAED pattern represents the polycrystalline nature of the resultant ferrite nano-particles. High purity of the sample is confirmed by energy dispersive X-ray analysis. The FTIR spectra show two strong absorption bands in the range of 600 - 400 cm<sup>–1</sup>, which confirm the presence of M-O stretching band in ferrites. The magnetic properties of the synthesized samples were investigated by using vibrating sample magnetometer at room temperature. According to VSM reports the main magnetic parameters like saturation magnetization (M<sub>s</sub>), coercivity (H<sub>c</sub>) were found to decrease with the substitution of Cr<sup>3+</sup> content. Possible mechanisms which are responsible for the results are scrutinized minutely in this paper.展开更多
Mn-Zn ferrites doped with different contents of Sm^(3+) and Gd^(3+) ions were prepared by sol-gel auto-combustion method and characterized by Fourier transform infrared spectroscopy(FTIR), thermogravimetric an...Mn-Zn ferrites doped with different contents of Sm^(3+) and Gd^(3+) ions were prepared by sol-gel auto-combustion method and characterized by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG), X-ray diffraction(XRD), scanning electron microscopy(SEM) and vibrating sample magnetometer(VSM). When samples were calcined in a relatively low temperature below 1100 °C, secondary phases(α-Fe_2O_3) could be identified. Therefore, in order to acquire pure and better crystallinity, the suitable calcining temperature of powders was selected at 1200 °C. It was also found that all the samples consisting of ferrite phases of typical spinel cubic structure and average crystallite sizes between 31.5 and 38.2 nm were obtained after calcining at 1200 oC for 4 h. The lattice parameters increased almost linearly with increasing Sm content. A dense microstructure was obtained after sintering at 1250 °C for 4 h. Through the analysis of magnetic properties, hysteresis loops for all the samples were narrow with low values of coercivity and retentivity, indicating the paramagnetic nature of these samples. And saturation magnetization Ms strongly depended on the type of additive to reach a maximum of 47.99 emu/g for x=0.015, which showed a great promise for hyperthermia applications.展开更多
Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state a...Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state at low temperature. The samples show a characteristic of ferromagnetism(FM) characteristic in the temperature range of 15-125 K and 15-150 K respectively; the samples show preformed clusters in the temperature range of 125-343 K and 150-325 K, respectively, the samples show paramagnetism(PM)characteristic above 343 and 325 K, respectively. The second-order transitions are found at 118 and 135 K for undoped and doped sample, respectively. When the applied magnetic field is 7 T, the maximum magnetic entropy change |△S_M| value of the samples is near the Curie temperature(Tc), and the value of|△S_M| reaches 2.76 and 3.03 J/(K kg), respectively. In addition, the relative cooling power(RCP) is found to be 425.28 and 443.53 J/kg. The numerical fitting data fit well with experimental data. These results indicate that both the samples have the potential to realize magnetic refrigeration in the high temperature region(T > 77 K).展开更多
To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance ...To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support.展开更多
The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The h...The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The highest temperatures at which the samples were calcined were 973, 1073, 1273, and 1473 K. The X-ray diffraction (XRD) analyses indicate that all the samples have only a single phase with the R3c perovskite structure. As the calcination temperature and calcination time increase, the oxygen content in the samples increases from being deficient to being in excess of that in the stoichiometric formula. The crystallite size also increases from 23 to 283 nm. Magnetic measurements indicate that the sample calcined at 1073 K has the highest Curie temperature. This is owing to the fact that the crystallite cores of this sample have stoichiometric oxygen content. The dependence of the Curie temperature and the saturation magnetization on the calcination tem- perature are successfully explained.展开更多
Magnetic properties of thermally aged Fe-Cu alloys with pre deformation have been evaluated to improve the understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlem...Magnetic properties of thermally aged Fe-Cu alloys with pre deformation have been evaluated to improve the understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlement in reactor pressure vessel (RPV) steels. Fe-Cu alloys with and without pre-deformation were thermally aged at 500 ℃ and the changes in microstructure, mechanical properties and magnetic properties were determined. It is found that the strain-induced dislocations recover and the Cu-rich particles precipitate during the aging process, and the magnet- ic properties variation depends on the combined influence of these two factors. From the point of view of NDE, a fully tempered or annealed microstructure is favorable before RPV is put into service. These results improve the un- derstanding of magnetic property evolution in actual RPV steels and help to develop NDE theory for irradiation embrittlement.展开更多
基金Funded by the Natural Science Foundation of High Education School ofAnhui Province,China (Nos:KJ2007B0271 and KJ2010A095)
文摘Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibrating sample magnetometer(VSM) at room temperature.The results show that the grain size of nanocrystalline Ni1-xZnxFe2O4 ferrite calcined at 600 ℃ for 1.5 h is about 30 nm.Lattice parameter and specific saturation magnetization Ms of nanocrystalline Ni1-xZnxFe2O4 ferrite increase with the Zn^2+ ions content at room temperature,and maximum Ms is 66.8 A·m^2·kg^-1 as the Zn^2+ ions content is around 0.5,and coercivity Hc of the nanocrystalline Ni1-xZnxFe2O4 ferrite decreases with Zn^2+ ions content.
文摘(Fe7Co3)0.15(SiO2)0.85 granular alloy solid was prepared successfully using sol-gel method. The samples with different reducing temperatures were investigated by X-ray diffractometer(XRD),transmission electron micrography(TEM) and vibrating sample magnetometer(VSM). The av-erage particIe sizes of the samples were also calculated from Scherrer formula. The magnetic properties of (Fe7Co3 )o. 15 (SiO2)0.85 were studied in detail.
基金the National Natural Science Foundation of China (No. 90607021).
文摘Ni0.4Cu0.2Zn0.4Fe2O4 thin films were fabricated on Si substrates by using the sol-gel method and rapid thermal annealing (RTA), and their magnetic properties and crystalline structures were investigated. The samples calcined at and above 600 ℃ have a single-phase spinel structure and the average grain size of the sample calcined at 600 ℃ is about 20 nm. The initial permeability μi, saturation magnetization M and coercivity H of the samples increase with the increasing calcination temperature. The sample calcined at 600 ℃ exhibits an excellent soft magnetic performance, which has μi=33.97 (10 MHz), Hc=15.62 Oe and Ms=228.877 emu/cm^3. Low-temperature annealing can enhance the magnetic properties of the samples. The work shows that using the sol-gel method in conjunction with RTA is a promising way to fabricate integrated thin-film devices.
基金Funded by the Basic Key Project in Shanghai City (06JC14033)the Key Discipline Construction Fund in Shanghai City (P1304)
文摘Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.
基金Project supported by the National Basic Research Program of China(Grant No.2007CB310407)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.61021061)+1 种基金the National Natural Youth Fund of China(Grant No.61001025)National Programs for Science and Technology Development of Guangdong Province,China(Grant No.2010B090400314)
文摘In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.
基金Project(50501008) supported by the National Natural Science Foundation of China
文摘Soft magnetic properties of Fe82Mo7B10Cu1 nanocrystalline alloy were studied as a function of cooling condition. The results show that higher permeability and relaxation frequency can be obtained by the two-step cooling method, and the pinning field of the sample obtained by this method is smaller than that of the furnace-cooled and water-quenched samples. This phenomenon was interpreted in terms of internal stress and the magnetic ordering of the residual amorphous phase. The two-step cooling treatment is an effective way to improve the soft magnetic properties of Fe82Mo7B10Cu1 nanocrystalline alloy.
文摘Ti4+ substitution for Fe3+ in Ni0.5Zn0.5Fe2O4(NZF) ferrite thin films were realized by sol-gel method and annealing at 600 ℃ for 30 min in the air. Crystal structure and lattice constant determination was performed by X-ray diffractometer(XRD). Surface microstructure was observed by scanning electron microscope(SEM) and atomic force microscope(AFM),and the magnetic properties were measured by vibrating sample magnetometer(VSM). XRD analyses of the samples show that Ni0.5+xZn0.5TixFe2-2xO4(NZTF) films with x varying from 0 to 0.15 in steps of 0.05 are composed of single phase with spinel structure. And the lattice parameter,particle size and the diffraction intensity of the films increase with substitution of Ti as the result of the larger radius ions entering the lattice. SEM and AFM show homogeneous grain size of each sample,but there is a few differences in grain size with different Ti-substitution contents. As the nonmagnetic Ti4+ substitutes Fe3+,both the saturation magnetization and coercivity decrease.
基金This project was financially supported by the National Natural Science Foundation Key Project of China (No. 19934003)the National Key Fundamental Research Project of China (No. 001CB610604)+1 种基金the Natural Science Research Project of the Education Department of Anhui Province (No. 2004KJ331)the Natural Science Research Project of Colleges and Universities of Anhui Province, China (No. 2005KJ234)
文摘The perovskite manganite sample La0.3Ca0.7Mn1-xWxO3 (x = 0.08, 0.12) was prepared by the solid-state reaction method. The effect of W doping on the Mn site to La0.3Ca0.7MnO3 charge ordering phase and the changing process of magnetic properties were studied through the measurement of the M-T curve, M-H curves, and ESR curves of the sample. The results showed that when x = 0.08, the charge ordering (CO) phase exists in the system, the transition temperature Tco= 275 K, and the system exhibits PM when T 〉 275 K. The system transforms from spin-disordering paramagnetism to spin-ordering antiferromagnetism in the charge ordering state with the temperature decreasing from 275 K to 230 K. The long-range antiferromagnetism forms and AFM/CO states coexist between 230 K and 5 K. There is a little ferromagnetic component in the AFM/CO background in a low temperature range. When x = 0.12, the CO phase in the system has almost melted completely. There is a little remnant of the CO phase below 150 K. The system exhibits paramagnetism when T 〉 150 K and transforms from paramagnetism to ferromagnetism when T〈 150 K.
基金This work was supported by Suranaree University of Tech-nology(SUT)was financially supported by the Office of the Higher Education Commission under NRU Project of Thailand and the Research Network NANOTEC(RNN)pro-gram of the National Nanotechnology Center(NANOTEC),NSTDA,Ministry of Higher Education,Science,Research and Innovation(MHESI),Thailand.
文摘Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO_(2) nanoparticles were investigated.By varying the calcination temperature,X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size,respectively.Notably,the reduction in particle size of the synthesized KFeO_(2) was found to have a remarkable influence on the magnetic properties.At room temperature,the synthesized KFeO_(2) nanoparticles prepared at 873 K exhibited the highest saturation magnetization(M_(S))of 2.07×10^(4) A·m^(−1).In addition,the coercivity(H_(C))increased from 3.51 to 16.89 kA·m^(−1) as the calcination temperature increased to 973 K.The zero-field cooled(ZFC)results showed that the blocking temperatures(T_(B))of about 125 and 85 K were observed in the samples calcined at 773 and 873 K,respectively.Therefore,this work showed that the egg white solution method is simple,cost effective,and environmentally friendly for the preparation of KFeO_(2) nanoparticles.
基金Project supported by the National Natural Science Foundation of China for Young Scientists(Grant No.10904123)the National Natural Science Foundation of China(Grant Nos.10774118 and 10974152)the Special Item Foundation of Educational Committee of Shaanxi Province,China(Grant No.08JK471)
文摘The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considered. It is found that all the lowest-energy Ira (n=4-13) geometries prefer non-compact structures rather than compact structure growth pattern. And the cube structure is a very stable cell for the lowest-energy Ira (n 〉 8) clusters. The second-order difference of energy, the vertical ionization potentials, the electron affinities and the atomic average magnetic moments for the lowest-energy Ira geometries all show odd even alternative behaviours.
文摘The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, they are used as gas sensor and absorbent of solar energy. Furthermore, they are employed as an effective catalyzer in environmental clearing. In the thermal gradation method, carbonyl cobalt Co2(CO)8 is often used as a precursor, though cobalt carbonyl is very toxic and expensive. Magnetic compounds have been among interesting issues for human beings for over 4000 years. In large societies, magnetic compounds including computer disks, credit cards, speakers, coolers, automatic doors, and many other devices can be observed on a daily basis. The structure and morphology of as-prepared Co3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The TEM images showed that the product nanoparticles consisted of dispersive quasi- spherical particles with a narrow size distribution ranged from 5 to 15 nm and an average size around 10 nm. The magnetic measurements confirmed that the Co3O4 nanoparticles show a little ferromagnetic behavior which could be attributed to the uncompensated surface spins and finite size effects. The ferromagnetic order of the Co3O4 nanoparticles is raised with increasing the decomposition temperature.
基金the National Natural Science Foundation of China(No.60778040)the Science and Technology Bureau of Jilin Province, China(No.20060518).
文摘Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties of the samples were studied by means of X-ray diffraction, TEM, and VSM magnetometers. X-Ray powder diffraction results show that Ni-Mg solid solution was formed with the single phase of face-centered cubic(fcc) structure. The particle size became larger with the increase of temperature. When the sintering temperature was 400 °C, the particle size was 6.3 nm, whereas it was 46.2 nm at 900 °C. Both the saturation magnetization(Ms) and the coercivity were enhanced with the increase of the particle size. The Ms values of the samples ranged from 18.965 to 46.766 emu/g and the coercivity ranged from 1051.3568 to 9145.0848 A/m.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No.8151009001000055
文摘In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correlationfunctions are obtained by using the Tyablikov decoupling approximation.Our results show that the magnetic susceptibilityand correlation length are a monotonically decreasing function of temperature regardless of the mixed spins.It isfound that in the case of S = s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropicferromagnetic Heisenberg chain in the whole temperature region.Our results for the susceptibility are in agreement withthose obtained by other theoretical approaches.
文摘Fe-based bulk metallic glasses (BMGs) have been extensively studied due to their potential technological applications and their interesting physical properties such as a low modulus of elasticity, high yielding stress and good magnetic properties. In the present work, the bulk metallic glass (BMG) formation of Fe40Ni40B20 (numbers indicate at %) with a ribbon form was fabricated by the single roller melt-spinning method. Rapid solidification leads to a fully amorphous structure for all compositions. The thermal properties associated with crystallization temperature of the glassy samples were measured using differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The microstructure and constituent phase of the alloy composite have been analyzed by using X-ray diffractometry (XRD). The effect of high temperature on the isothermal crystallization of Fe40Ni40B20 ribbon was investigated by HTX-ray diffraction. In addition, these ribbon glasses also exhibit good soft magnetic properties with M-H curvature measured under the magnetic fields between –1 kOe and 1 kOe.
文摘Nano-crystalline Cr<sub>x</sub>CoFe<sub>2–x</sub>O<sub>4</sub> (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrites were synthesized by sol-gel method. The X-ray diffraction patterns of all the samples provide information about the existence of single phase spinel structure. The SEM and TEM micrographs show the uniform particle distribution and SAED pattern represents the polycrystalline nature of the resultant ferrite nano-particles. High purity of the sample is confirmed by energy dispersive X-ray analysis. The FTIR spectra show two strong absorption bands in the range of 600 - 400 cm<sup>–1</sup>, which confirm the presence of M-O stretching band in ferrites. The magnetic properties of the synthesized samples were investigated by using vibrating sample magnetometer at room temperature. According to VSM reports the main magnetic parameters like saturation magnetization (M<sub>s</sub>), coercivity (H<sub>c</sub>) were found to decrease with the substitution of Cr<sup>3+</sup> content. Possible mechanisms which are responsible for the results are scrutinized minutely in this paper.
基金Project supported by the National Natural Science Foundation of China(51102073)the Natural Science Foundation of Education Department of Anhui Province of China(KJ2015A232,KJ2015B1105906)+3 种基金the Natural Science Foundation of Anhui Province of China(1308085QB35)the research fund of State Key Laboratory of Structural Chemistry(20110012)Anhui Province Outstanding Young Teachers Visit Abroad Training Projects(gxfxZD2016220)the Outstanding Young Talent Project in Colleges and Universities of Anhui Province
文摘Mn-Zn ferrites doped with different contents of Sm^(3+) and Gd^(3+) ions were prepared by sol-gel auto-combustion method and characterized by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG), X-ray diffraction(XRD), scanning electron microscopy(SEM) and vibrating sample magnetometer(VSM). When samples were calcined in a relatively low temperature below 1100 °C, secondary phases(α-Fe_2O_3) could be identified. Therefore, in order to acquire pure and better crystallinity, the suitable calcining temperature of powders was selected at 1200 °C. It was also found that all the samples consisting of ferrite phases of typical spinel cubic structure and average crystallite sizes between 31.5 and 38.2 nm were obtained after calcining at 1200 oC for 4 h. The lattice parameters increased almost linearly with increasing Sm content. A dense microstructure was obtained after sintering at 1250 °C for 4 h. Through the analysis of magnetic properties, hysteresis loops for all the samples were narrow with low values of coercivity and retentivity, indicating the paramagnetic nature of these samples. And saturation magnetization Ms strongly depended on the type of additive to reach a maximum of 47.99 emu/g for x=0.015, which showed a great promise for hyperthermia applications.
基金Project supported by the State Key Development Program for Basic Research of China(11164019,51562032,61565013)Inner Mongolia Natural Science Foundation(2015MS0109)+1 种基金Research Program of Sciences at Universities of Inner Mongolia Autonomous Region of China(NJZZ11166,NJZY 16237,NJZY12202)Young Science and Technology Foundation of Baotou Teachers'College(BSYKJ2014-22)
文摘Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state at low temperature. The samples show a characteristic of ferromagnetism(FM) characteristic in the temperature range of 15-125 K and 15-150 K respectively; the samples show preformed clusters in the temperature range of 125-343 K and 150-325 K, respectively, the samples show paramagnetism(PM)characteristic above 343 and 325 K, respectively. The second-order transitions are found at 118 and 135 K for undoped and doped sample, respectively. When the applied magnetic field is 7 T, the maximum magnetic entropy change |△S_M| value of the samples is near the Curie temperature(Tc), and the value of|△S_M| reaches 2.76 and 3.03 J/(K kg), respectively. In addition, the relative cooling power(RCP) is found to be 425.28 and 443.53 J/kg. The numerical fitting data fit well with experimental data. These results indicate that both the samples have the potential to realize magnetic refrigeration in the high temperature region(T > 77 K).
基金Project(2017QNA21)supported by Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support.
基金financially supported by the National Natural Science Foundation of China(No.NSF-11174069)the Natural Science Foundation of Hebei Province(No.E2011205083)+1 种基金the Key Item Science Foundation of Hebei Province(No.10965125D)the Key Item Science Foundation of the Education Department of Hebei Province(No.ZD2010129)
文摘The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The highest temperatures at which the samples were calcined were 973, 1073, 1273, and 1473 K. The X-ray diffraction (XRD) analyses indicate that all the samples have only a single phase with the R3c perovskite structure. As the calcination temperature and calcination time increase, the oxygen content in the samples increases from being deficient to being in excess of that in the stoichiometric formula. The crystallite size also increases from 23 to 283 nm. Magnetic measurements indicate that the sample calcined at 1073 K has the highest Curie temperature. This is owing to the fact that the crystallite cores of this sample have stoichiometric oxygen content. The dependence of the Curie temperature and the saturation magnetization on the calcination tem- perature are successfully explained.
文摘Magnetic properties of thermally aged Fe-Cu alloys with pre deformation have been evaluated to improve the understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlement in reactor pressure vessel (RPV) steels. Fe-Cu alloys with and without pre-deformation were thermally aged at 500 ℃ and the changes in microstructure, mechanical properties and magnetic properties were determined. It is found that the strain-induced dislocations recover and the Cu-rich particles precipitate during the aging process, and the magnet- ic properties variation depends on the combined influence of these two factors. From the point of view of NDE, a fully tempered or annealed microstructure is favorable before RPV is put into service. These results improve the un- derstanding of magnetic property evolution in actual RPV steels and help to develop NDE theory for irradiation embrittlement.