期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of temperature on the mechanical properties of Ti6Al4V powder compacts prepared by magnetic pulse compaction 被引量:3
1
作者 LI Mini YU Haiping LI Chunfeng 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期302-307,共6页
The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The... The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range. 展开更多
关键词 powder metallurgy powder compaction magnetic pulse compaction heating temperature relative density electromagnetic forming
下载PDF
Optimal Matching of Magnetic Pulse Compressor 被引量:2
2
作者 苏建仓 孙鉴 +2 位作者 刘国治 刘纯亮 丁臻捷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期229-233,共5页
Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission... Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses. 展开更多
关键词 magnetic pulse compressor magnetic switch optimal matching time
下载PDF
Microstructure and mechanical properties of Ti6Al4V powder compacts prepared by magnetic pulse compaction 被引量:1
3
作者 李敏 于海平 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期553-558,共6页
Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness ... Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles. 展开更多
关键词 powder metallurgy Ti6Al4V powder compaction magnetic pulse compaction relative density electromagnetic forming
下载PDF
Effect of wide-spectrum pulsed magnetic field on grain refinement of pure aluminium
4
作者 Ya-ming Bai Gang Li +2 位作者 Ya-wei Sun Yong-yong Gong Qi-jie Zhai 《China Foundry》 SCIE CAS CSCD 2023年第1期40-48,共9页
A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studi... A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation. 展开更多
关键词 wide-spectrum pulsed magnetic field forced flow grain refinement frequency components
下载PDF
DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE 被引量:3
5
作者 H.P. Yu C.F. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期277-283,共7页
The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on th... The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts. 展开更多
关键词 magnetic pulse compaction copper powder compaction density electromagnetic forming
下载PDF
Effects of Standoff Distance on Magnetic Pulse Welded Joints Between Aluminum and Steel Elements in Automobile Body 被引量:4
6
作者 Junjia Cui Shaoluo Wang +1 位作者 Wei Yuan Guangyao Li 《Automotive Innovation》 CSCD 2020年第3期231-241,共11页
In industrial production,the standoff distance of magnetic pulse welding(MPW)is a critical parameter as it directly affects welding quality.However,the effects of standoff distance on the physical properties of MPW jo... In industrial production,the standoff distance of magnetic pulse welding(MPW)is a critical parameter as it directly affects welding quality.However,the effects of standoff distance on the physical properties of MPW joints have not been investi-gated.Therefore,in this study,aluminum alloy(AA5182)sheets and high-strength low-alloy steel(HC340LA)sheets were welded through MPW at a discharge energy of 20 kJ,under various standoff distances.Thereafter,mechanical tests were performed on the MPW joints,and the results indicate that there is a significant change in the shear strength of the AA5182/HC340LA-welded joints with respect to the standoff distance.When the standoff distance ranges from 0.8 to 1.4 mm,the strength of the joint is higher than that of the base AA5182 sheet.Microscopic observations were conducted to analyze the interfacial morphology,element diffusion behavior,and microdefects on the welding interface of the AA5182/HC340LA joints.The AA5182/HC340LA joint with a standoff distance of 1.4 mm possesses the longest welded region and the largest interfacial wave.This interfacial wave pattern is suitable for achieving MPW joints with high shear strengths. 展开更多
关键词 magnetic pulse welding Aluminum/steel joints Standoff distance Mechanical properties MICROSTRUCTURES
原文传递
Interface Microstructure of Al-Fe Tubes Joint by Magnetic Pulse Welding 被引量:1
7
作者 XU Zhi-dan YU Hai-ping +1 位作者 LI Chun-feng HAN Yu-jie 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期442-445,共4页
Magnetic Pulse Welding(MPW)is a very high speed process which produces solid-state welds.In this work, Welding interface microstructure of Al/Fe tubes by MPW and its influence factors were investigated.The equipment w... Magnetic Pulse Welding(MPW)is a very high speed process which produces solid-state welds.In this work, Welding interface microstructure of Al/Fe tubes by MPW and its influence factors were investigated.The equipment with a capacitor of 100 μF was used under different voltages range from 8 kV to 15 kV.SEM and TEM observation were carried out to investigate microstructure of the welding interface.The results show that the dissimilar tubes(Al/Fe)could be welded with the optimum tapered angle of about 4 degree.The welding interface in Al/Fe joints exhibits a characteristic wavy morphology with wavelength of about I00 μm.A new layer exists between base tubes consisting of AI and Fe elements.Ultrafme grained microstructure is founded near the welding interface.The results obtain in this work provide the fundamentals for the investigation of MPW mechanism of dissimilar tubes. 展开更多
关键词 magnetic pulse welding dissimilar material ultrafine grained microstructure
原文传递
Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies
8
作者 J. Bellmann J. Lueg-Althoff +3 位作者 S. Schulze S. Gies E. Beyer A. E. Tekkaya 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第4期322-339,共18页
Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generat... Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automo- tive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation. 展开更多
关键词 magnetic pulse welding (MPW) Processmonitoring Collision conditions Dissimilar metaljoining Materials testing
原文传递
INFLUENCE OF PULSED MAGNETIC FIELD ON MICROSTRUC-TURES AND MACRO-SEGREGATION IN 2124 Al-ALLOY 被引量:19
9
作者 C.Y.Ban,J.Z.Cui,Q.X.Ba,G.M.Lu and B.J.ZhangP.O. Box 317, The Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China Manuscript received 10 October 2001 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第4期380-384,共5页
The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidifi... The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidification structures of 2124 Al-alloy under pulsed magnetic field. The eutectic phase at grain boundaries change from thick continuous eutectic network to thin discontinuous one, and the distribution of solute elements was also homogenized. The typical negative segregation phenomenon of Cu in common solidification condition was restrained, and the segregation of Mg decreased. 展开更多
关键词 aluminium alloy pulsed magnetic field MICROSTRUCTURE segrega-tion
下载PDF
Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field 被引量:12
10
作者 LI Qiu-shu LI Hai-bin ZHAI Qi-jie 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第5期69-72,共4页
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica... To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity. 展开更多
关键词 pulsed magnetic field austenitic stainless steel solidification structure solidification behavior
下载PDF
Sterilization of Escherichia coli cells by the application of pulsed magnetic field 被引量:8
11
作者 LIMei QUJiu-hui PENGYong-zhen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第2期348-352,共5页
The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer s... The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer solution Na 2HPO 4/NaH 2PO 4(0 334/0 867 mmol/L). Experimental results indicated that the survivability(N/N 0; where N 0 and N are the number of cells survived per mill il iter before and after electromagnetic pulses application, respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that the medium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinate influences in destruction of E. coli cells by the application of magnetic pulses. The application of an magnetic intensity B=160 mT at pulses frequency f=62 kHz and treatment time t=16 h result in a considerable destruction levels of E. coli cells (N/N 0=10 -4 ). Possible mechanisms involved in sterilization of the magnetic field treatment were discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. The practicability test showed that the treatment time was shortened to 4 h with the application of three groups of parallel coil when the survivability of E.coli cells was less than 0 01%; and the power consumption was about 0 2 kWh /m 3. 展开更多
关键词 Escherichia coli bacteria pulsed magnetic field induced current cell membrane
下载PDF
Soft magnetic properties of amorphous Fe_(52)Co_(34)Hf_7B_6Cu_1 alloy treated by pulsed magnetic field and annealing 被引量:7
12
作者 谷月 晁月盛 张艳辉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期477-480,共4页
The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then... The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then annealed at 100 ℃-400 ℃ for 30 min in a vacuum. The rise in temperature during the treatment by a pulsed magnetic field is measured by a non-contact infrared thermometer. The soft magnetic properties of specimens are measured by a vibrating sample magnetometer (VSM). The microstructure changes of specimens are observed by a MSssbauer spectroscopy and transmission electron microscope (TEM). The results show the medium-frequency pulsating magnetic field will pro- mote nanocrystallization of the amorphous alloy with a lower temperature rise. The nanocrystalline phase is (α-Fe(Co) with bcc crystal structure, and the grain size is about 10 nm. After vacuum annealing at 100 ℃ for 30 min, scattering nanocrystalline phases become more uniform, the coercive force and the saturation magnetization of the specimens are 41.98 A/m and 185.15 emu/g. 展开更多
关键词 amorphous alloys pulsed magnetic field vacuum annealing NANOCRYSTALLIZATION
下载PDF
In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field 被引量:8
13
作者 Guirong Li Yutao Zhao Qixun Dai Hongjie Zhang Hongming Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期460-463,共4页
Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturba... Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication. 展开更多
关键词 in-situ synthesis aluminum matrix composites pulsed magnetic field THERMODYNAMICS KINETICS
下载PDF
Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field 被引量:6
14
作者 Wenchao Duan Siqi Yin +5 位作者 Wenhong Liu Zhong Zhao Kun Hu Ping Wang Jianzhong Cui Zhiqiang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期166-182,共17页
For obtaining the finer grains of magnesium alloy,a novel combined pulsed magnetic field with different initial phases,also called out-ofphase pulsed magnetic field(OPPMF),was applied to study the solidification struc... For obtaining the finer grains of magnesium alloy,a novel combined pulsed magnetic field with different initial phases,also called out-ofphase pulsed magnetic field(OPPMF),was applied to study the solidification structure of AZ80 magnesium alloy.The numerical simulation was simultaneously conducted to investigate the refinement mechanisms.The experimental results showed that the macrostructure could be effectively refined by applying external magnetic field.Meanwhile,finer grains were obtained with the higher current intensity.However,the increase of current intensity could only refine the grains to about 0.5 mm.Furthermore,compared to a single pulsed magnetic field(PMF)and alternating series of OPPMF(Connection II),a finer structure was observed when the consecutive series of OPPMF(Connection I)was imposed.In contrast with a single PMF and Connection II,the numerical results showed that the greater axial Lorentz force was obtained under the Connection I,generating the stronger forced flow in the melt.It is believed that abundant nuclei could detach from the mold wall and move faster into the interior melt due to the stronger forced flow;besides,the lower superheat and greater temperature uniformity in bulk melt were realized,accounting for the finest structures under the Connection I. 展开更多
关键词 Out-of-phase pulsed magnetic field Magnesium alloy Grain refinement Numerical simulation Forced flow
下载PDF
The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center 被引量:5
15
作者 Xiaotao Han Tao Peng +13 位作者 Hongfa Ding Tonghai Ding Zengwei Zhu Zhengcai Xia Junfeng Wang Junbo Han Zhongwen Ouyang Zhenxing Wang Yibo Han Houxiu Xiao Quanliang Cao Yiliang Lv Yuan Pan Liang Li 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第6期278-286,共9页
Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field wa... Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research. 展开更多
关键词 pulsed high magnetic field pulsed magnet Scientific research Electromagnetic technology
下载PDF
Effect of harmonic magnetic field and pulse magnetic field on microstructure of high purity Cu during electromagnetic direct chill casting 被引量:2
16
作者 Lei Bao Da-zhi Zhao +3 位作者 Yin-ji Zhao Yong-hui Jia Xuan Wang Qi-chi Le 《China Foundry》 SCIE CAS 2021年第2期141-146,共6页
The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by... The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting.The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils.A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method.The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement.The microstructure of billets produced by HMF and PMF casting was compared.Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF,due to its faster variation in transient current and higher peak value of magnetic flux density.In addition,PMF drives a stronger Lorentz force and deeper penetration depth than HMF does,because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field.The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions.By contrast,the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection,which increases the uniformity of the temperature field,enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool.Eventually,PMF shows a good prospect for industrialization. 展开更多
关键词 high purity Cu pulse magnetic field harmonic magnetic field MICROSTRUCTURE sputtering target direct chill casting
下载PDF
Analysis of Graphite Morphology of Gray Cast Iron in Pulse Magnetic Field 被引量:1
17
作者 LIQiu-shu LIULi-qiang ZHAIQi-jie 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第2期45-48,共4页
By self-made pulse electrical source and strong magnetic field solidification tester, the effect of strong pulse magnetic field on graphite morphology and solidification structure of gray cast iron was studied. The re... By self-made pulse electrical source and strong magnetic field solidification tester, the effect of strong pulse magnetic field on graphite morphology and solidification structure of gray cast iron was studied. The results show that the structure is remarkably refined after treated by pulse magnetic field, and the width of graphite flakes is decreased while the length is increased after a slight decrease. The solidification temperature and eutectic temperature are increased and the undercooling degree of eutectic transformation is decreased by magnetic field. 展开更多
关键词 pulse magnetic field gray cast iron graphite morphology SOLIDIFICATION
下载PDF
Effects of pulsed magnetic field on density reduction of high flow velocity plasma sheath 被引量:1
18
作者 徐佳皓 李小平 +1 位作者 刘东林 王远 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期53-66,共14页
A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath.Taking the typical parameters of plasma sheath at th... A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath.Taking the typical parameters of plasma sheath at the height of 71 km as an example,the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field,as well as the effect of self-electric field on the distribution of plasma density,are studied.The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath.Meanwhile,the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System(GPS)signal.Besides,the location of density reduction area provides a reference for the appropriate location of antenna.The time evolution of plasma density shows that the effective density reduction time can reach 62%of the pulse duration,and the maximum reduction of plasma density can reach 55%.Based on the simulation results,the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed.Furthermore,the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field.However,the quasi neutral assumption of plasma in the flow field is not appropriate,because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density,which cannot be ignored.The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles. 展开更多
关键词 pulsed magnetic field plasma sheath communication blackout
下载PDF
Pulsed electromagnetic non-destructive evaluation and applications 被引量:8
19
作者 TIAN Guiyun ZHOU Xiuyun Ibukun D.Adewale 《Instrumentation》 2014年第1期15-28,共14页
This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This... This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development. 展开更多
关键词 ELECTROmagnetic pulsed eddy current pulsed magnetic flux leakage eddy current pulsed thermography DEFECTS non-destructive testing/evaluation(NDT&E).
下载PDF
Regulation of the density distribution of a strongly dissipative plasma by a pulsed magnetic field
20
作者 凌文斌 金成刚 +2 位作者 关键 张钰业 鄂鹏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期50-58,共9页
A pulsed transverse magnetic field with pulse width of 12 ms and magnitude of 2 T was used to modify the density distribution of a weakly-ionized plasma flow with strong collisions between the charged particles and ne... A pulsed transverse magnetic field with pulse width of 12 ms and magnitude of 2 T was used to modify the density distribution of a weakly-ionized plasma flow with strong collisions between the charged particles and neutrals.The morphology of the plasma is changed substantially,with the density increased upstream and decreased downstream.Meanwhile,the plasma toward the axis contracts laterally and gradually converges to a collimated flow.In addition,a drift wave is observed to be excited in the inhomogeneous plasma by the magnetic field. 展开更多
关键词 pulsed magnetic field weakly-ionized plasma plasma dynamics drift instability
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部