期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Template-free synthesis of core-shell Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2) magnetic photocatalyst for wastewater treatment 被引量:4
1
作者 Jingshu Yuan Yao Zhang +3 位作者 Xiaoyan Zhang Liang Zhao Hanlin Shen Shengen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期177-191,共15页
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult... TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell. 展开更多
关键词 CORE-SHELL MoS2 mesoporous TiO2 photocatalytic degradation heterojunction magnetic recycling
下载PDF
A Systematic Classification and Labelling Approach to Support a Circular Economy Ecosystem for NdFeB-Type Magnet
2
作者 Carlo Burkhardt Antje Lehmann +1 位作者 Benjamin Podmiljsak Spomenka Kobe 《材料科学与工程(中英文B版)》 2020年第4期125-133,共9页
Availability of magnetic materials is most crucial for modern Europe,as they are integral to energy conversion across the renewable energy and electric mobility sectors.Unfortunately,there is still no circular economy... Availability of magnetic materials is most crucial for modern Europe,as they are integral to energy conversion across the renewable energy and electric mobility sectors.Unfortunately,there is still no circular economy to reuse and capture value for these types of materials.With the prediction that the need for NdFeB Rare Earth(RE)magnets will double in the next 10 years,this problem becomes even more urgent.As the quality of the recollected materials varies significantly,the development of a classification system for recyclate grades of EOL NdFeB magnets in combination with an eco-labelling system for newly produced RE permanent magnets is proposed to clearly identify different magnet types and qualities.It categorises the NdFeB magnets by technical pre-processing requirements,facilitating use of the highly effective HPMS process(Hydrogen Processing of Magnetic Scrap)for re-processing extracted materials directly from NdFeB alloy.The proposed measures will have a great impact to overcome existing low recycling rates due to poor collection,high leakages of collected materials into non-suitable channels,and inappropriate interface management between logistics,mechanical pre-processing and metallurgical metals recovery. 展开更多
关键词 NdFeB permanent magnet magnet recycling HPMS hydrogen decrepitation labelling&grading data matrix code(DMC) reycling factor MaXycle SUSMAGPRO
下载PDF
Hydrometallurgical recycling of NdF eB magnets: Complete leaching, iron removal and electrolysis 被引量:7
3
作者 Mehmet Ali Recai Onal Chenna Rao Borra +2 位作者 Muxing Guo Bart Blanpain Tom Van Gerven 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第6期574-584,共11页
NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these... NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these magnets with minimum use of chemicals and waste generation. In this study, a hydrometallurgical method was studied that could be adjusted to recover not only REM, but also other valuable metals(e.g.Co, Ni and Cu) that co-existed in the magnet. The magnet powders were completely dissolved in a dilute sulfuric acid solution giving more than 98% of dissolved iron in the ferrous state. Chemical oxidation of Fe-(2+) into Fe-(3+) by the addition of MnO 2 required only 1 h at ambient temperature. It was then possible to precipitate more than 99% of this ferric iron by adjusting the pH of the solution above 3 with either Ca(OH)2 or MnO additions. However, the addition of Ca(OH)2 resulted in the formation of gypsum and up to ca. 23% REM losses, possibly via co-precipitation into the gypsum. MnO elevated the Mn-(2+) concentration in the solution. However, it was found to be problematic that subsequent direct electrolysis removed Mn and Co. Low anodic current efficiencies(ACE) resulted in high energy consumption(EC), while incomplete Mn and Co removals and undesired REM losses were reported. Pre-electrolysis removals of REM and/or Co by oxalate and/or sulfide precipitation were proven to be successful and selective, but this enlarged the flowsheet considerably with only minor improvement of the Mn removal, ACE and EC. 展开更多
关键词 electrolysis magnet recycling precipitate leaching anodic subsequent ferrous dissolved leachate
原文传递
Magnetic property recovery in Nd-Fe-B bonded magnet wastes with chemical reaction and physical dissolution
4
作者 Min Liu Haiyuan Cui +11 位作者 Qingyan Li Peihong Zhu Weiqiang Liu Qingmei Lu Dongtao Zhang Zaisheng Pang Xi Yu Chunhui Yu Shanshun Zha Youhao Liu Xiaofei Yi Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第11期1396-1401,I0003,共7页
The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by ad... The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by adding ammonia-water and mixed organic solvents.Ammonia-water can react with the epoxy functional group of epoxy resin to generate polyols.Mixed organic solvents of alcohol,dimethyl formamide(DMF),and tetrahydrofuran(THF) can dissolve the generated polyols and residual epoxy resins.Under the optimum processing conditions,the epoxy resins in the waste magnetic powders are substantially removed.The oxygen and carbon contents in the recycled magnetic powder are reduced from 13500 × 10^(-6) to 1600 × 10^(-6) and from 19500 × 10^(-6) to 2100 × 10^(-6) with the reduction ratio of88.1% and 89.2%,respectively.The recycled magnetic powder presents improved magnetic properties with MS of 1.306 × 10^(-1) A·m^(2)/g,Mr of 0.926 × 10^(-1) A·m^(2)/g,Hcj of 1.170 T,and(BH)max of 125.732 kJ/m^(3),which reach 99.8%,99.4%,95.9%,and 96.9% of the original magnetic powders,respectively. 展开更多
关键词 Nd-Fe-B bonded magnet wastes Epoxy resin Open-loop reaction Physical dissolution Recycled magnetic powders Rare earths
原文传递
A facile process to optimize performance of regenerated Nd-Fe-B sintered magnets:Chemo-selective dissolution washing
5
作者 Haibo Xu Qingmei Lu +9 位作者 Lichao Yu Liying Cong Haowen Tian Weiqiang Liu Youhao Liu Yunqiao Wang Jingwu Chen Xiaofei Yi Qiong Wu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1976-1983,I0006,共9页
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-... In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively. 展开更多
关键词 recycling Nd-Fe-B magnet Sludge Chemo-selective dissolution Washing process magnetic properties Reduction diffusion Rare earths
原文传递
Recycled Nd-Fe-B sintered magnets prepared from sludges by calcium reduction-diffusion process 被引量:10
6
作者 Xiaowen Yin Min Liu +5 位作者 Baicen Wan Yu Zhang Weiqiang Liu Yufeng Wu Dongtao Zhang Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第12期1284-1291,共8页
Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In presen... Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route. 展开更多
关键词 Nd-Fe-B sintered magnet sludges Reduction-diffusion Removing CaO Recycled magnet Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部