期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Weak magnetic field accelerates chromate removal by zero-valent iron 被引量:2
1
作者 Pian Feng Xiaohong Guan +5 位作者 Yuankui Sun Wonyong Choi Hejie Qin Jianmin Wang Junlian Qiao Lina Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第5期175-183,共9页
Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a ... Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher p H. Fe2+was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+release rate in the absence of Cr(VI) at pH 4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI)removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore,WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation. 展开更多
关键词 Reduction Iron corrosion Fe2+ release Activation energy magnetic memory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部